1. |
王布雷. 白及多糖水凝胶促皮肤伤口愈合作用研究. 西安: 陕西师范大学, 2021.
|
2. |
Qu J, Zhao X, Liang Y, et al. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials, 2018, 183: 185-199.
|
3. |
Iqubal MK, Iqubal A, Anjum H, et al. Determination of in vivo virtue of dermal targeted combinatorial lipid nanocolloidal based formulation of 5-fluorouracil and resveratrol against skin cancer. Int J Pharm, 2021, 610: 121179.
|
4. |
Wang M, Huang X, Zheng H, et al. Nanomaterials applied in wound healing: mechanisms, limitations and perspectives. J Control Release, 2021, 337: 236-247.
|
5. |
Hirsch T, Spielmann M, Zuhaili B, et al. Enhanced susceptibility to infections in a diabetic wound healing model. BMC Surg, 2008, 8: 5.
|
6. |
Parani M, Lokhande G, Singh A, et al. Engineered nanomaterials for infection control and healing acute and chronic wounds. ACS Appl Mater Interfaces, 2016, 8(16): 10049-10069.
|
7. |
Zhao X, Wu H, Guo B, et al. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials, 2017, 122: 34-47.
|
8. |
Gil J, Natesan S, Li J, Valdes J, et al. A PEGylated fibrin hydrogel-based antimicrobial wound dressing controls infection without impeding wound healing. Int Wound J, 2017, 14(6): 1248-1257.
|
9. |
Zhong SP, Zhang YZ, Lim CT. Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2010, 2(5): 510-525.
|
10. |
马蕊. 负载 P 物质和脂肪干细胞的甲基丙烯酰化明胶-丝素蛋白水凝胶促进皮肤创口愈合的研究. 长春: 吉林大学, 2023.
|
11. |
赵雅玫, 余小平, 张苗苗, 等. 维生素 D3 促进皮肤损伤修复的研究进展. 感染、炎症、修复, 2022, 23(3): 180-183.
|
12. |
Li Z, Zhou F, Li Z, et al. Hydrogel cross-linked with dynamic covalent bonding and micellization for promoting burn wound healing. ACS Appl Mater Interfaces, 2018, 10(30): 25194-25202.
|
13. |
Yu W, Jiang G, Zhang Y, et al. Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin. Mater Sci Eng C Mater Biol Appl, 2017, 80: 187-196.
|
14. |
柳春玉, 王雪, 舒丹, 等. 硼酸/硼硅酸盐生物活性玻璃促创面愈合进展. 硅酸盐学报, 2024, 52(2): 681-693.
|
15. |
冯伟娜. 磺化透明质酸基水凝胶的构建及其在调控创面炎症微环境促进愈合中的研究. 北京: 北京化工大学, 2023.
|
16. |
Gao D, Zhang Y, Bowers DT, et al. Functional hydrogels for diabetic wound management. APL Bioeng, 2021, 5(3): 031503.
|
17. |
Wang Y, Beekman J, Hew J, et al. Burn injury: challenges and advances in burn wound healing, infection, pain and scarring. Adv Drug Deliv Rev, 2018, 123: 3-17.
|
18. |
王萍, 范莉, 田梅. 放射性皮肤损伤机制的研究进展. 中国辐射卫生, 2022, 31(4): 524-529.
|
19. |
王一如, 白姣姣. 微环境 pH 值对慢性创面愈合影响的研究进展. 护理学杂志, 2023, 38(19): 121-124.
|
20. |
董毓敏, 袁亚翠, 郑婉君, 等. 慢性伤口患者负性情绪与生活质量的相关性及其影响因素分析. 临床医学研究与实践, 2023, 8(19): 48-51.
|
21. |
Fu X. State policy for managing chronic skin wounds in China. Wound Repair Regen, 2020, 28(4): 576-577.
|
22. |
Sen CK. Human wounds and its burden: an updated compendium of estimates. Adv Wound Care (New Rochelle), 2019, 8(2): 39-48.
|
23. |
Yang Z, Huang R, Zheng B, et al. Highly stretchable, adhesive, biocompatible, and antibacterial hydrogel dressings for wound healing. Adv Sci (Weinh), 2021, 8(8): 2003627.
|
24. |
Hu H, Xu FJ. Rational design and latest advances of polysaccharide-based hydrogels for wound healing. Biomater Sci, 2020, 8(8): 2084-2101.
|
25. |
周美玲, 杜姗, 欧康康, 等. 纳米纤维基智能创伤敷料的研究进展. 材料导报, 2024, 38(20): 272-282.
|
26. |
Mei L, Zhu S, Yin W, et al. Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics, 2020, 10(2): 757-781.
|
27. |
阎锡蕴. 纳米材料新特性及生物医学应用. 北京: 科学出版社, 2014: 327.
|
28. |
Kumar SSD, Rajendran NK, Houreld NN, et al. Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications. Int J Biol Macromol, 2018, 115: 165-175.
|
29. |
王鸿彬, 程杰. VSD 联合纳米银医用抗菌敷料对糖尿病足慢性难愈创面疗效和炎性因子的影响. 中华养生保健, 2023, 41(18): 1-4.
|
30. |
郭春兰, 席祖洋, 邓红艳, 等. 纳米银敷料用于体表慢性难愈合伤口的效果及安全性评价. 广东医学, 2016, 37(22): 3477-3480.
|
31. |
Hadrup N, Sharma AK, Loeschner K. Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: a review. Regul Toxicol Pharmacol, 2018, 98: 257-267.
|
32. |
Li J, Cha R, Mou K, et al. Nanocellulose-based antibacterial materials. Adv Healthc Mater, 2018, 7(20): e1800334.
|
33. |
Darbasizadeh B, Fatahi Y, Feyzi-Barnaji B, et al. Crosslinked-polyvinyl alcohol-carboxymethyl cellulose/ZnO nanocomposite fibrous mats containing erythromycin (PVA-CMC/ZnO-EM): fabrication, characterization and in-vitro release and anti-bacterial properties. Int J Biol Macromol, 2019, 141: 1137-1146.
|
34. |
Kert M, Jazbec K, Černe L, et al. The influence of nano-ZnO application methods on UV protective properties of cotton. Acta Chim Slov, 2014, 61(3): 587-594.
|
35. |
Yu LP, Fang T, Xiong DW, et al. Comparative toxicity of nano-ZnO and bulk ZnO suspensions to zebrafish and the effects of sedimentation, ˙OH production and particle dissolution in distilled water. J Environ Monit, 2011, 13(7): 1975-1982.
|
36. |
周礼胜. 一种具有抗菌和免疫调节功能水凝胶用于感染创面治疗的研究. 广州: 暨南大学, 2024.
|
37. |
吴凡. 负载利拉鲁肽和氧化锌的电纺膜用作细菌感染创面敷料. 上海: 东华大学, 2023.
|
38. |
Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science, 2006, 311(5761): 622-627.
|
39. |
Deng X, Luan Q, Chen W, et al. Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology, 2009, 20(11): 115101.
|
40. |
Yang H, Liu C, Yang D, et al. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol, 2009, 29(1): 69-78.
|
41. |
Franklin NM, Rogers NJ, Apte SC, et al. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol, 2007, 41(24): 8484-8490.
|
42. |
Khan AUR, Huang K, Khalaji MS, et al. Multifunctional bioactive core-shell electrospun membrane capable to terminate inflammatory cycle and promote angiogenesis in diabetic wound. Bioact Mater, 2021, 6(9): 2783-2800.
|
43. |
Khan AUR, Huang K, Jinzhong Z, et al. Exploration of the antibacterial and wound healing potential of a PLGA/silk fibroin based electrospun membrane loaded with zinc oxide nanoparticles. J Mater Chem B, 2021, 9(5): 1452-1465.
|
44. |
王伟. 负载氧化锌的 OSA-ZnO 复合纳米纤维的制备及用于大鼠皮肤创面愈合的研究. 上海: 东华大学, 2022.
|
45. |
孙慧譞. 基于 ZnO NPs@GO 抗菌水凝胶伤口敷料的制备、评价与应用. 武汉: 武汉理工大学, 2022.
|
46. |
Li W, Zhang G, Wei X. Lidocaine-loaded reduced graphene oxide hydrogel for prolongation of effects of local anesthesia: in vitro and in vivo analyses. J Biomater Appl, 2021, 35(8): 1034-1042.
|
47. |
Li H, Jia Y, Liu C. RETRACTED: pluronic® F127 stabilized reduced graphene oxide hydrogel for transdermal delivery of ondansetron: ex vivo and animal studies. Colloids Surf B Biointerfaces, 2020, 195: 111259.
|
48. |
Paul A, Hasan A, Kindi HA, et al. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano, 2014, 8(8): 8050-8062.
|
49. |
Jing X, Mi HY, Napiwocki BN, et al. Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering. Carbon, 2017, 125: 557-570.
|
50. |
Reina G, González-Domínguez JM, Criado A, et al. Promises, facts and challenges for graphene in biomedical applications. Chem Soc Rev, 2017, 46(15): 4400-4416.
|
51. |
Jin L, Guo X, Gao D, et al. NIR-responsive MXene nanobelts for wound healing. NPG Asia Mater, 2021, 13(24): 1-9.
|