1. |
Banoth B, Cassel SL. Mitochondria in innate immune signaling. Transl Res, 2018, 202: 52-68.
|
2. |
Bonawitz ND, Clayton DA, Shadel GS. Initiation and beyond: multiple functions of the human mitochondrial transcription machinery. Mol Cell, 2006, 24(6): 813-825.
|
3. |
吴昀紫, 郗博洲, 马亮亮, 等. 线粒体质量控制与肿瘤研究进展. 中国医学前沿杂志(电子版), 2024, 16(2): 78-87.
|
4. |
Ta N, Qu C, Wu H, et al. Mitochondrial outer membrane protein FUNDC2 promotes ferroptosis and contributes to doxorubicin-induced cardiomyopathy. Proc Natl Acad Sci U S A, 2022, 119(36): e2117396119.
|
5. |
吉士俊, 刘楠. 线粒体能量代谢相关铁死亡在肿瘤治疗中的研究进展. 药物生物技术, 2023, 30(5): 525-530.
|
6. |
Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer, 2011, 11(5): 325-337.
|
7. |
Vander heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 2009, 324(5930): 1029-1033.
|
8. |
Del Principe MI, Del Poeta G, Venditti A, et al. Apoptosis and immaturity in acute myeloid leukemia. Hematology, 2005, 10(1): 25-34.
|
9. |
Chan DC. Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol, 2020, 15: 235-259.
|
10. |
李静, 徐平龙, 陈莎莎. 线粒体调控肿瘤免疫的研究进展. 浙江大学学报 (医学版), 2024, 53(1): 1-14.
|
11. |
Ho GT, Theiss AL. Mitochondria and inflammatory bowel diseases: toward a stratified therapeutic intervention. Annu Rev Physiol, 2022, 84: 435-459.
|
12. |
Sugiura A, McLelland GL, Fon EA, et al. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J, 2014, 33(19): 2142-2156.
|
13. |
Towers CG, Wodetzki DK, Thorburn J, et al. Mitochondrial-derived vesicles compensate for loss of LC3-mediated mitophagy. Dev Cell, 2021, 56(14): 2029-2042. e5.
|
14. |
Ni HM, Williams JA, Ding WX. Mitochondrial dynamics and mitochondrial quality control. Redox Biol, 2015, 4: 6-13.
|
15. |
Wang R, Li Y, Dehaen W. Antiproliferative effect of mitochondria-targeting allobetulin 1, 2, 3-triazolium salt derivatives and their mechanism of inducing apoptosis of cancer cells. Eur J Med Chem, 2020, 207: 112737.
|
16. |
Lenaers G, Neutzner A, Le Dantec Y, et al. Dominant optic atrophy: culprit mitochondria in the optic nerve. Prog Retin Eye Res, 2021, 83: 100935.
|
17. |
Rasmussen ML, Gama V. A connection in life and death: the BCL-2 family coordinates mitochondrial network dynamics and stem cell fate. Int Rev Cell Mol Biol, 2020, 353: 255-284.
|
18. |
Wang X, Wen Y, Zhang J, et al. MFN2 interacts with nuage-associated proteins and is essential for male germ cell development by controlling mRNA fate during spermatogenesis. Development, 2021, 148(7): dev196295.
|
19. |
Vezza T, Díaz-Pozo P, Canet F, et al. The role of mitochondrial dynamic dysfunction in age-associated type 2 diabetes. World J Mens Health, 2022, 40(3): 399-411.
|
20. |
Giacomello M, Pyakurel A, Glytsou C, et al. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol, 2020, 21(4): 204-224.
|
21. |
Herkenne S, Scorrano L. OPA1, a new mitochondrial target in cancer therapy. Aging (Albany NY), 2020, 12(21): 20931-20933.
|
22. |
Chuang KC, Chang CR, Chang SH, et al. Imiquimod-induced ROS production disrupts the balance of mitochondrial dynamics and increases mitophagy in skin cancer cells. J Dermatol Sci, 2020, 98(3): 152-162.
|
23. |
Hernández-Alvarez MI, Zorzano A. Mitochondrial dynamics and liver cancer. Cancers (Basel), 2021, 13(11): 2571.
|
24. |
司雨平, 殷学伟, 魏文健, 等. 线粒体动力学在白血病中的研究进展. 中国实验血液学杂志, 2023, 31(4): 1224-1228.
|
25. |
Ma Y, Wang L, Jia R. The role of mitochondrial dynamics in human cancers. Am J Cancer Res, 2020, 10(5): 1278-1293.
|
26. |
Yin CF, Chang YW, Huang HC, et al. Targeting protein interaction networks in mitochondrial dynamics for cancer therapy. Drug Discov Today, 2022, 27(4): 1077-1087.
|
27. |
Ng MYW, Wai T, Simonsen A. Quality control of the mitochondrion. Dev Cell, 2021, 56(7): 881-905.
|
28. |
Song C, Pan S, Zhang J, et al. Mitophagy: a novel perspective for insighting into cancer and cancer treatment. Cell Prolif, 2022, 55(12): e13327.
|
29. |
Panigrahi DP, Praharaj PP, Bhol CS, et al. The emerging, multifaceted role of mitophagy in cancer and cancer therapeutics. Semin Cancer Biol, 2020, 66: 45-58.
|
30. |
Lazarini M, Machado-Neto JA, Duarte AD, et al. BNIP3L in myelodysplastic syndromes and acute myeloid leukemia: impact on disease outcome and cellular response to decitabine. Haematologica, 2016, 101(11): e445-e448.
|
31. |
Pei S, Minhajuddin M, Adane B, et al. AMPK/FIS1-mediated mitophagy is required for self-renewal of human AML stem cells. Cell stem cell, 2018, 23(1): 86-100. e6.
|
32. |
Mattes K, Vellenga E, Schepers H. Differential redox-regulation and mitochondrial dynamics in normal and leukemic hematopoietic stem cells: a potential window for leukemia therapy. Crit Rev Oncol Hematol, 2019, 144: 102814.
|
33. |
Nguyen TD, Shaid S, Vakhrusheva O, et al. Loss of the selective autophagy receptor p62 impairs murine myeloid leukemia progression and mitophagy. Blood, 2019, 133(2): 168-179.
|
34. |
Folkerts H, Wierenga AT, van den Heuvel FA, et al. Elevated VMP1 expression in acute myeloid leukemia amplifies autophagy and is protective against venetoclax-induced apoptosis. Cell Death Dis, 2019, 10(6): 421.
|
35. |
Xu Y, Tran L, Tang J, et al. FBP1-altered carbohydrate metabolism reduces leukemic viability through activating P53 and Modulating the mitochondrial quality control system in vitro. Int J Mol Sci, 2022, 23(19): 11387.
|
36. |
Cai J, Wang J, Huang Y, et al. ERK/Drp1-dependent mitochondrial fission is involved in the MSC-induced drug resistance of T-cell acute lymphoblastic leukemia cells. Cell Death Dis, 2016, 7(11): e2459.
|
37. |
Matthijssens F, Sharma ND, Nysus M, et al. RUNX2 regulates leukemic cell metabolism and chemotaxis in high-risk T cell acute lymphoblastic leukemia. J Clin Invest, 2021, 131(6): e141566.
|
38. |
Singh R, Jain A, Palanichamy JK, et al. Ultrastructural changes in cristae of lymphoblasts in acute lymphoblastic leukemia parallel alterations in biogenesis markers. Appl Microsc, 2021, 51(1): 20.
|
39. |
Dubois A, Ginet C, Furstoss N, et al. Differentiation inducing factor 3 mediates its anti-leukemic effect through ROS-dependent DRP1-mediated mitochondrial fission and induction of caspase-independent cell death. Oncotarget, 2016, 7(18): 26120-26136.
|
40. |
Maggi F, Morelli MB, Tomassoni D, et al. The effects of cannabidiol via TRPV2 channel in chronic myeloid leukemia cells and its combination with imatinib. Cancer Sci, 2022, 113(4): 1235-1249.
|
41. |
Penter L, Gohil SH, Lareau C, et al. Longitudinal single-cell dynamics of chromatin accessibility and mitochondrial mutations in chronic lymphocytic leukemia mirror disease history. Cancer Discov, 2021, 11(12): 3048-3063.
|
42. |
Gavriilidis GI, Ntoufa S, Papakonstantinou N, et al. Stem cell factor is implicated in microenvironmental interactions and cellular dynamics of chronic lymphocytic leukemia. Haematologica, 2021, 106(3): 692-700.
|
43. |
Scharping NE, Menk AV, Moreci RS, et al. The tumor microenvironment represses t cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity, 2016, 45(2): 374-388.
|
44. |
van Bruggen JAC, Martens AWJ, Fraietta JA, et al. Chronic lymphocytic leukemia cells impair mitochondrial fitness in CD8+ T cells and impede CAR T-cell efficacy. Blood, 2019, 134(1): 44-58.
|
45. |
WEI J, LONG L, ZHENG W, et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature, 2019, 576(7787): 471-476.
|
46. |
Zheng W, Wei J, Zebley CC, et al. Regnase-1 suppresses TCF-1+ precursor exhausted T-cell formation to limit CAR-T-cell responses against ALL. Blood, 2021, 138(2): 122-135.
|
47. |
王利, 王科进. 骨髓微环境在白血病发病机制中的研究进展. 实用肿瘤学杂志, 2023, 37(6): 524-528.
|
48. |
宋建新, 欧阳红梅, 闻艳, 等. 急性白血病相关巨噬细胞的性质及 rhIFN-γ对其影响的研究. 重庆医学, 2019, 48(19): 3292-3296, 3302.
|
49. |
Ganapathy-kanniappan S. Linking tumor glycolysis and immune evasion in cancer: emerging concepts and therapeutic opportunities. Biochim Biophys Acta Rev Cancer, 2017, 1868(1): 212-220.
|
50. |
Xu B, Hu R, Liang Z, et al. Metabolic regulation of the bone marrow microenvironment in leukemia. Blood Rev, 2021, 48: 100786.
|
51. |
Klein K, He K, Younes AI, et al. Role of mitochondria in cancer immune evasion and potential therapeutic approaches. Front Immunol, 2020, 11: 573326.
|
52. |
李凤, 杨斐斐, 徐燕丽. 白血病微环境免疫异质性最新研究进展. 中国实验血液学杂志, 2023, 31(5): 1569-1573.
|
53. |
Spiegel JY, Patel S, Muffly L, et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat Med, 2021, 27(8): 1419-1431.
|
54. |
Dai H, Wu Z, Jia H, et al. Bispecific CAR-T cells targeting both CD19 and CD22 for therapy of adults with relapsed or refractory B cell acute lymphoblastic leukemia. J Hematol Onco, 2020, 13(1): 53.
|
55. |
Melenhorst JJ, Chen GM, Wang M, et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature, 2022, 602(7897): 503-509.
|
56. |
Chamoto K, Chowdhury PS, Kumar A, et al. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc Natl Acad Sci U S A, 2017, 114(5): E761-E770.
|
57. |
Bengsch B, Johnson AL, Kurachi M, et al. Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8(+) T cell exhaustion. Immunity, 2016, 45(2): 358-373.
|
58. |
Kouidhi S, Ben Ayed F, Benammar Elgaaied A. Targeting tumor metabolism: a new challenge to improve immunotherapy. Front Immunol, 2018, 9: 353.
|