1. |
Asir B, Boscutti A, Fenoy AJ, et al. Deep brain stimulation (DBS) in treatment-resistant depression (TRD): hope and concern. Adv Exp Med Biol, 2024, 1456: 161-186.
|
2. |
Lozano AM, Lipsman N, Bergman H, et al. Deep brain stimulation: current challenges and future directions. Nat Rev Neurol, 2019, 15(3): 148-160.
|
3. |
冼文彪, 陈玲. 帕金森病脑深部电刺激治疗. 中国实用内科杂志, 2019, 39(9): 778-782.
|
4. |
Peralta M, Jannin P, Baxter JSH. Machine learning in deep brain stimulation: a systematic review. Artif Intell Med, 2021, 122: 102198.
|
5. |
Samuel, AL. Some studies in machine learning using the game of checkers. IBM J Res Develop, 1959, 3(3): 210-229.
|
6. |
Senders JT, Zaki MM, Karhade AV, et al. An introduction and overview of machine learning in neurosurgical care. Acta Neurochir (Wien), 2018, 160(1): 29-38.
|
7. |
Celtikci E. A systematic review on machine learning in neurosurgery: the future of decision-making in patient care. Turk Neurosurg, 2018, 28(2): 167-173.
|
8. |
Buchlak QD, Esmaili N, Leveque JC, et al. Machine learning applications to clinical decision support in neurosurgery: an artificial intelligence augmented systematic review. Neurosurg Rev, 2020, 43(5): 1235-1253.
|
9. |
Senders JT, Arnaout O, Karhade AV, et al. Natural and Artificial Intelligence in neurosurgery: a systematic review. Neurosurgery, 2018, 83(2): 181-192.
|
10. |
Konar A. Artifcial intelligence and soft computing behavioral and cognitive modeling of the human brain. Boca Raton: CRC Press, 1999.
|
11. |
Myers A. Stanford’s John McCarthy, seminal fgure of artifcial intelligence, dies at 84. California: Stanford University, 2011.
|
12. |
Russell SJ, Norvig P. Artifcial intelligence-a modern approach. 3rd ed. New Jersey: Pearson Education Inc. , 2010.
|
13. |
Shamir RR, Dolber T, Noecker AM, et al. Machine learning approach to optimizing combined stimulation and medication therapies for Parkinson’s disease. Brain Stimul, 2015, 8(6): 1025-1032.
|
14. |
Suppa A, Asci F, Costantini G, et al. Effects of deep brain stimulation of the subthalamic nucleus on patients with Parkinson’s disease: a machine-learning voice analysis. Front Neurol, 2023, 14: 1267360.
|
15. |
Jiang R, Chazot P, Pavese N, et al. Private facial prediagnosis as an edge service for Parkinson’s DBS treatment valuation. IEEE J Biomed Health Inform, 2022, 26(6): 2703-2713.
|
16. |
Wan KR, Maszczyk T, See AAQ, et al. A review on microelectrode recording selection of features for machine learning in deep brain stimulation surgery for Parkinson’s disease. Clin Neurophysiol, 2019, 130(1): 145-154.
|
17. |
Falkenberg JH, McNames J, Favre J, et al. Automatic analysis and visualization of microelectrode recording trajectories to the subthalamic nucleus: preliminary results. Stereotact Funct Neurosurg, 2006, 84(1): 35-45.
|
18. |
Virtanen P, Gommers R, Oliphant TE, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods, 2020, 17(3): 261-272.
|
19. |
Li KHC, White FA, Tipoe T, et al. The current state of mobile phone apps for monitoring heart rate, heart rate variability, and atrial fibrillation: narrative review. JMIR Mhealth Uhealth, 2019, 7(2): e11606.
|
20. |
Boutet A, Hancu I, Saha U, et al. 3-Tesla MRI of deep brain stimulation patients: safety assessment of coils and pulse sequences. J Neurosurg, 2019, 132(2): 586-594.
|
21. |
Rathore S, Habes M, Iftikhar MA, et al. A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages. Neuroimage, 2017, 155: 530-548.
|
22. |
Cagnan H, Dolan K, He X, et al. Automatic subthalamic nucleus detection from microelectrode recordings based on noise level and neuronal activity. J Neural Eng, 2011, 8(4): 046006.
|
23. |
Shah SA, Tinkhauser G, Chen CC, et al. Parkinsonian tremor detection from subthalamic nucleus local field potentials for closed-loop deep brain stimulation. Annu Int Conf IEEE Eng Med Biol Soc, 2018, 2018: 2320-2324.
|
24. |
Koch M, Geraedts V, Wang H, et al. Automated machine learning for EEG-based classification of Parkinson’s disease patients//Proceedings of the 2019 IEEE International Conference on Big Data (Big Data). Los Angeles: IEEE, 2019: 4845-4852.
|
25. |
Ciecierski KA, Mandat T. Unsupervised machine learning in classification of neurobiological data. Berlin: Springer, 2019: 203-212.
|
26. |
Valsky D, Blackwell KT, Tamir I, et al. Real-time machine learning classification of pallidal borders during deep brain stimulation surgery. J Neural Eng, 2020, 17(1): 016021.
|
27. |
Karthick PA, Wan KR, An Qi AS, et al. Automated detection of subthalamic nucleus in deep brain stimulation surgery for Parkinson’s disease using microelectrode recordings and wavelet packet features. J Neurosci Methods, 2020, 343: 108826.
|
28. |
Hosny M, Zhu M, Gao W, et al. Deep convolutional neural network for the automated detection of subthalamic nucleus using MER signals. J Neurosci Methods, 2021, 356: 109145.
|
29. |
Martin T, Gilmore G, Haegelen C, et al. Adapting the listening time for micro-electrode recordings in deep brain stimulation interventions. Int J Comput Assist Radiol Surg, 2021, 16(8): 1371-1379.
|
30. |
Mesko B. The role of artifcial intelligence in precision medicine. Expert Rev Precis Med Drug Dev, 2017, 2(5): 239-241.
|