1. |
Hollenberg SM, Singer M. Pathophysiology of sepsis-induced cardiomyopathy. Nat Rev Cardiol, 2021, 18(6): 424-434.
|
2. |
Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet, 2020, 395(10219): 200-211.
|
3. |
Perner A, Cecconi M, Cronhjort M, et al. Expert statement for the management of hypovolemia in sepsis. Intensive Care Med, 2018, 44(6): 791-798.
|
4. |
Liu YC, Yao Y, Yu MM, et al. Frequency and mortality of sepsis and septic shock in China: a systematic review and meta-analysis. BMC Infect Dis, 2022, 22(1): 564.
|
5. |
Cecconi M, Evans L, Levy M, et al. Sepsis and septic shock. Lancet, 2018, 392(10141): 75-87.
|
6. |
Martínez-Férriz A, Ferrando A, Fathinajafabadi A, et al. Ubiquitin-mediated mechanisms of translational control. Semin Cell Dev Biol, 2022, 132: 146-154.
|
7. |
Yau R, Rape M. The increasing complexity of the ubiquitin code. Nat Cell Biol, 2016, 18(6): 579-586.
|
8. |
Nakamura N. Ubiquitin system. Int J Mol Sci, 2018, 19(4): 1080.
|
9. |
Sheng X, Xia Z, Yang H, et al. The ubiquitin codes in cellular stress responses. Protein Cell, 2024, 15(3): 157-190.
|
10. |
Chen MY, Liu Y, Fang M. The role of protein ubiquitination in the onset and progression of sepsis. Cells, 2025, 14(13): 1012.
|
11. |
Jiang T, Peng D, Shi W, et al. IL-6/STAT3 signaling promotes cardiac dysfunction by upregulating FUNDC1-dependent mitochondria-associated endoplasmic reticulum membranes formation in sepsis mice. Front Cardiovasc Med, 2022, 8: 790612.
|
12. |
Wang R, Xu Y, Fang Y, et al. Pathogenetic mechanisms of septic cardiomyopathy. J Cell Physiol, 2022, 237(1): 49-58.
|
13. |
Tang X, Weng R, Guo G, et al. USP10 regulates macrophage inflammation responses via stabilizing NEMO in LPS-induced sepsis. Inflamm Res, 2023, 72(8): 1621-1632.
|
14. |
Ma M, Cao R, Tian Y, et al. Ubiquitination and metabolic disease. Adv Exp Med Biol, 2024, 1466: 47-79.
|
15. |
Liu F, Chen J, Li K, et al. Ubiquitination and deubiquitination in cancer: from mechanisms to novel therapeutic approaches. Mol Cancer, 2024, 23(1): 148.
|
16. |
Cheng L, Feng B, Xie C, et al. Overexpression of miR-20a targeting DUSP3 inhibits OCLN ubiquitination levels and alleviates sepsis induced intestinal barrier dysfunction. In Vitro Cell Dev Biol Anim, 2025, 61(4): 459-471.
|
17. |
Qian Y, Wang Z, Lin H, et al. TRIM47 is a novel endothelial activation factor that aggravates lipopolysaccharide-induced acute lung injury in mice via K63-linked ubiquitination of TRAF2. Signal Transduct Target Ther, 2022, 7(1): 148.
|
18. |
Zhu W, Zhang Q, Jin L, et al. OTUD1 deficiency alleviates LPS-induced acute lung injury in mice by reducing inflammatory response. Inflammation, 2025, 48(2): 649-661.
|
19. |
Liu H, Jing G, Wu S, et al. Acod1 promotes PAD4 ubiquitination via UBR5 alkylation to modulate NETosis and exert protective effects in sepsis. Adv Sci (Weinh), 2025, 30: e11652.
|
20. |
Wu F, Zhang YT, Teng F, et al. S100a8/a9 contributes to sepsis-induced cardiomyopathy by activating ERK1/2-Drp1-mediated mitochondrial fission and respiratory dysfunction. Int Immunopharmacol, 2023, 115: 109716.
|
21. |
Liao J, Su X, Wang M, et al. The E3 ubiquitin ligase CHIP protects against sepsis-induced myocardial dysfunction by inhibiting NF-κB-mediated inflammation via promoting ubiquitination and degradation of karyopherin-α 2. Transl Res, 2023, 255: 50-65.
|
22. |
Wang Z, Sun S, Huang L, et al. METTL3/YTHDF1-mediated m6A modification stabilizes USP12 to deubiquitinate FOXO3 and promote apoptosis in sepsis-induced myocardial dysfunction. Mol Immunol, 2025, 177: 17-31.
|
23. |
Sun HJ, Zheng GL, Wang ZC, et al. Chicoric acid ameliorates sepsis-induced cardiomyopathy via regulating macrophage metabolism reprogramming. Phytomedicine, 2024, 123: 155175.
|
24. |
Ma Y, Mouton AJ, Lindsey ML. Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction. Transl Res, 2018, 191: 15-28.
|
25. |
Yu Y, Fu Q, Li J, et al. E3 ubiquitin ligase COP1-mediated CEBPB ubiquitination regulates the inflammatory response of macrophages in sepsis-induced myocardial injury. Mamm Genome, 2024, 35(1): 56-67.
|
26. |
Gao W, Wang L, Li Z. Ubiquitin-specific protease 8 regulates cognitive dysfunction of mice with sepsis-associated encephalopathy through SIRT1 deubiquitination. Curr Neurovasc Res, 2023: 12.
|
27. |
Shen W, Zhang X, Tang M, et al. Targeting of ubiquitination and degradation of KLF15 by E3 ubiquitin ligase KBTBD7 regulates LPS-induced septic brain injury in microglia. Exp Cell Res, 2024, 443(1): 114317.
|
28. |
Matsuo S, Sharma A, Wang P, et al. PYR-41, a ubiquitin-activating enzyme E1 inhibitor, attenuates lung injury in sepsis. Shock, 2018, 49(4): 442-450.
|
29. |
Dao L, Liu H, Xiu R, et al. Gramine improves sepsis-induced myocardial dysfunction by binding to NF-κB p105 and inhibiting its ubiquitination. Phytomedicine, 2024, 125: 155325.
|
30. |
Liu Y, Hu N, Ai B, et al. MiR-31-5p alleviates septic cardiomyopathy by targeting BAP1 to inhibit SLC7A11 deubiquitination and ferroptosis. BMC Cardiovasc Disord, 2024, 24(1): 286.
|
31. |
Luo Y, Li Y, He L, et al. Xinyang tablet ameliorates sepsis-induced myocardial dysfunction by regulating Beclin-1 to mediate macrophage autophagy and M2 polarization through LncSICRNT1 targeting E3 ubiquitin ligase TRAF6. Chin Med, 2023, 18(1): 143.
|