1. |
Farahani M, Shafiee A. Wound healing: From passive to smart dressings. Adv Healthc Mater, 2021, 10(16): e2100477. doi: 10.1002/adhm.202100477.
|
2. |
Wang X, Wang Y, Teng Y, et al. 3D bioprinting: opportunities for wound dressing development. Biomed Mater, 2023, 18(5). doi: 10.1088/1748-605X/ace228.
|
3. |
Jin Z, Zhang Z, Shao X, et al. Monitoring anomalies in 3D bioprinting with deep neural networks. ACS Biomater Sci Eng, 2023, 9(7): 3945-3952.
|
4. |
陈小雷, 胡浩磊, 李谊, 等. 3D生物打印技术在耳廓修复重建中的应用研究进展. 中国修复重建外科杂志, 2024, 38(6): 763-768.
|
5. |
Assad H, Assad A, Kumar A. Recent developments in 3D bio-printing and its biomedical applications. Pharmaceutics, 2023, 15(1): 255. doi: 10.3390/pharmaceutics15010255.
|
6. |
Maharjan S, Ma C, Singh B, et al. Advanced 3D imaging and organoid bioprinting for biomedical research and therapeutic applications. Adv Drug Deliv Rev, 2024, 208: 115237. doi: 10.1016/j.addr.2024.115237.
|
7. |
Huang G, Zhao Y, Chen D, et al. Applications, advancements, and challenges of 3D bioprinting in organ transplantation. Biomater Sci, 2024, 12(6): 1425-1448.
|
8. |
Naghieh S, Chen X. Printability-A key issue in extrusion-based bioprinting. J Pharm Anal, 2021, 11(5): 564-579.
|
9. |
Cheptsov V, Zhigarkov V, Maximova I, et al. Laser-assisted bioprinting of microorganisms with hydrogel microdroplets: peculiarities of Ascomycota and Basidiomycota yeast transfer. World J Microbiol Biotechnol, 2022, 39(1): 29. doi: 10.1007/s11274-022-03478-z.
|
10. |
Li X, Liu B, Pei B, et al. Inkjet bioprinting of biomaterials. Chem Rev, 2020, 120(19): 10793-10833.
|
11. |
Kumar H, Sakthivel K, Mohamed MGA, et al. Designing gelatin methacryloyl (GelMA)-based bioinks for visible light stereolithographic 3D biofabrication. Macromol Biosci, 2021, 21(1): e2000317. doi: 10.1002/mabi.202000317.
|
12. |
Lai J, Liu Y, Lu G, et al. 4D bioprinting of programmed dynamic tissues. Bioact Mater, 2024, 37: 348-377.
|
13. |
Mondschein RJ, Kanitkar A, Williams CB, et al. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Biomaterials, 2017, 140: 170-188.
|
14. |
Ashammakhi N, Hasan A, Kaarela O, et al. Advancing frontiers in bone bioprinting. Adv Healthc Mater, 2019, 8(7): e1801048. doi: 10.1002/adhm.201801048.
|
15. |
Vijayavenkataraman S, Yan WC, Lu WF, et al. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev, 2018, 132: 296-332.
|
16. |
Zhou X, Yu X, You T, et al. 3D printing-based hydrogel dressings for wound healing. Adv Sci (Weinh), 2024, 11(47): e2404580. doi: 10.1002/advs.202404580.
|
17. |
Bittner SM, Guo JL, Melchiorri A, et al. Three-dimensional printing of multilayered tissue engineering scaffolds. Mater Today (Kidlington), 2018, 21(8): 861-874.
|
18. |
Derakhshanfar S, Mbeleck R, Xu K, et al. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact Mater, 2018, 3(2): 144-156.
|
19. |
Han W, Zhou B, Yang K, et al. Biofilm-inspired adhesive and antibacterial hydrogel with tough tissue integration performance for sealing hemostasis and wound healing. Bioact Mater, 2020, 5(4): 768-778.
|
20. |
Yang X, Shi N, Liu J, et al. 3D printed hybrid aerogel gauzes enable highly efficient hemostasis. Adv Healthc Mater, 2023, 12(1): e2201591. doi: 10.1002/adhm.202201591.
|
21. |
Wei Q, Xu W, Liu M, etal. Viscosity-controlled printing of supramolecular-polymeric hydrogels via dual-enzyme catalysis. J Mater Chem B, 2016, 4(38): 6302-6306.
|
22. |
Zhou M, Yuan T, Shang L. 3D printing of naturally derived adhesive hemostatic sponge. Research (Wash D C), 2024, 7: 0446. doi: 10.34133/research.0446.
|
23. |
Dong T, Hu J, Dong Y, et al. Advanced biomedical and electronic dual-function skin patch created through microfluidic-regulated 3D bioprinting. Bioact Mater, 2024, 40: 261-274.
|
24. |
徐娜婷, 倪雪君, 王彪. 脂肪来源干细胞治疗糖尿病足溃疡的研究进展. 中华整形外科杂志, 2025, 41(7): 766-771.
|
25. |
Yastı AÇ, Akgun AE, Surel AA, et al. Graft of 3D bioprinted autologous minimally manipulated homologous adipose tissue for the treatment of diabetic foot ulcer. Wounds, 2023, 35(1): E22-E28.
|
26. |
Kesavan R, Sheela Sasikumar C, Narayanamurthy VB, et al. Management of diabetic foot ulcer with MA-ECM (minimally manipulated autologous extracellular matrix) using 3D bioprinting technology—An innovative approach. Int J Low Extrem Wounds, 2024, 23(1): 161-168.
|
27. |
Bajuri MY, Kim J, Yu Y, et al. New paradigm in diabetic foot ulcer grafting techniques using 3D-Bioprinted autologous minimally manipulated homologous adipose tissue (3D-AMHAT) with fibrin gel acting as a biodegradable scaffold. Gels, 2023, 9(1): 66. doi: 10.3390/gels9010066.
|
28. |
Nizioł M, Paleczny J, Junka A, et al. 3D printing of thermoresponsive hydrogel laden with an antimicrobial agent towards wound healing applications. Bioengineering (Basel), 2021, 8(6): 79. doi: 10.3390/bioengineering8060079.
|
29. |
Liu H, Mei H, Jiang H, et al. Bioprinted symbiotic dressings: A lichen-inspired approach to diabetic wound healing with enhanced bioactivity and structural integrity. Small, 2024, 11: e2407105. doi: 10.1002/smll.202407105.
|
30. |
Zhao H, Xu J, Yuan H, et al. 3D printing of artificial skin patches with bioactive and optically active polymer materials for anti-infection and augmenting wound repair. Mater Horiz, 2022, 9(1): 342-349.
|
31. |
Qiao M, Cheng B, Wu W, et al. Elastic sac-shaped hydrogel dressing with responsive antibacterial and pro-healing in movable wounds via MOF activated ink spraying. Biomaterials, 2025, 321: 123318. doi: 10.1016/j.biomaterials.2025.123318.
|
32. |
Teoh JH, Abdul Shakoor FT, Wang CH. 3D printing methyl cellulose hydrogel wound dressings with parameter exploration via computational fluid dynamics simulation. Pharm Res, 2022, 39(2): 281-294.
|
33. |
Fratini C, Weaver E, Moroni S, et al. Combining microfluidics and coaxial 3D-bioprinting for the manufacturing of diabetic wound healing dressings. Biomater Adv, 2023, 153: 213557. doi: 10.1016/j.bioadv.2023.213557.
|
34. |
Cleetus CM, Alvarez Primo F, Fregoso G, et al. Alginate hydrogels with embedded ZnO nanoparticles for wound healing therapy. Int J Nanomedicine, 2020, 15: 5097-5111.
|
35. |
Alizadehgiashi M, Nemr CR, Chekini M, et al. Multifunctional 3D-printed wound dressings. ACS Nano, 2021, 15(7): 12375-12387.
|
36. |
Liu X, Zhao P, Wu X, et al. Negative pressure smart patch to sense and heal the wound. Adv Sci (Weinh), 2025, 12(3): e2408077. doi: 10.1002/advs.202408077.
|