1. |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
Sun K, Zhang B, Lei S, et al. Incidence, mortality, and disability-adjusted life years of female breast cancer in China, 2022. Chin Med J (Engl), 2024, 137(20): 2429-2436.
|
3. |
赫捷, 陈万青, 李霓, 等. 中国女性乳腺癌筛查与早诊早治指南 (2021, 北京). 中国肿瘤, 2021, 30(3): 161-191.He J, Chen WQ, Li N, et al. China guideline for the screening and early detection of female breast cancer (2021, Beijing). China Cancer, 2021, 30(3): 161-191.
|
4. |
Tang DD, Ye ZJ, Liu WW, et al. Survival feature and trend of female breast cancer: A comprehensive review of survival analysis from cancer registration data. Breast, 2025, 79: 103862.
|
5. |
Elmore JG, Longton GM, Carney PA, et al. Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA, 2015, 313(11): 1122-1132.
|
6. |
国家肿瘤质控中心乳腺癌专家委员会, 中国抗癌协会乳腺癌专业委员会, 中国抗癌协会肿瘤药物临床研究专业委员会. 中国晚期乳腺癌规范诊疗指南 (2024版). 中华肿瘤杂志, 2024, 46(12): 1079-1106.Breast Cancer Expert Committee of National Cancer Quality Control Center, Breast Cancer Expert Committee of China Anti-Cancer Association, Cancer Drug Clinical Research Committee of China Anti-Cancer Association. Guidelines for diagnosis and treatment of advanced breast cancer in China (2024 edition). Chin J Oncol, 2024, 46(12): 1079-1106.
|
7. |
Kaddes M, Ayid YM, Elshewey AM, et al. Breast cancer classification based on hybrid CNN with LSTM model. Sci Rep, 2025, 15(1): 4409.
|
8. |
McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature, 2020, 577(7788): 89-94.
|
9. |
Retamero JA, Gulturk E, Bozkurt A, et al. Artificial intelligence helps pathologists increase diagnostic accuracy and efficiency in the detection of breast cancer lymph node metastases. Am J Surg Pathol, 2024, 48(7): 846-854.
|
10. |
Lami K, Yoon HS, Parwani AV, et al. Validation of prostate and breast cancer detection artificial intelligence algorithms for accurate histopathological diagnosis and grading: A retrospective study with a Japanese cohort. Pathology, 2024, 56(5): 633-642.
|
11. |
Challa B, Tahir M, Hu Y, et al. Artificial intelligence-aided diagnosis of breast cancer lymph node metastasis on histologic slides in a digital workflow. Mod Pathol, 2023, 36(8): 100216.
|
12. |
Khater T, Hussain A, Bendardaf R, et al. An explainable artificial intelligence model for the classification of breast cancer. IEEE Access, 2025, 13: 5618-5633.
|
13. |
Wolberg WH, Mangasarian OL. Multisurface method of pattern separation for medical diagnosis applied to breast cytology. Proc Natl Acad Sci U S A, 1990, 87(23): 9193-9196.
|
14. |
Street WN, Wolberg WH, Mangasarian OL. Nuclear feature extraction for breast tumor diagnosis. In: Proceedings of the Biomedical Image Processing and Biomedical Visualization. Bellingham, WA: SPIE, 1993.
|
15. |
De Cecco LG, Aidini A. Explainable AI with Python. Cham, Switzerland: Springer, 2021.
|
16. |
Kumar SL, Munish K, Rekha S. Artificial intelligence based medical decision support system for early and accurate breast cancer prediction. Adv Eng Softw, 2023, 175: 103234.
|
17. |
Saad A, Manimurugan S, Byung-Gyu K, et al. Breast cancer classification using Deep Q Learning (DQL) and gorilla troops optimization (GTO). Appl Soft Comput, 2023, 142: 110488.
|
18. |
Li H, Wang S, Zeng Q, et al. Serum Raman spectroscopy combined with multiple classification models for rapid diagnosis of breast cancer. Photodiagnosis Photodyn Ther, 2022, 40: 103115.
|
19. |
Martiniussen MA, Larsen M, Hovda T, et al. Performance of two deep learning-based AI models for breast cancer detection and localization on screening mammograms from breastscreen norway. Radiol Artif Intell, 2025, 7(3): e240039.
|
20. |
Mazer BL, Homer RJ, Rimm DL. False-positive pathology: Improving reproducibility with the next generation of pathologists. Lab Invest, 2019, 99(9): 1260-1265.
|
21. |
Elmore JG, Barnhill RL, Elder DE, et al. Pathologists' diagnosis of invasive melanoma and melanocytic proliferations: Observer accuracy and reproducibility study. BMJ, 2017, 357: j2813.
|
22. |
Jackson SL, Frederick PD, Pepe MS, et al. Diagnostic reproducibility: What happens when the same pathologist interprets the same breast biopsy specimen at two points in time? Ann Surg Oncol, 2017, 24(5): 1234-1241.
|
23. |
Stolz M. The revolution in breast cancer diagnostics: From visual inspection of histopathology slides to using desktop tissue analysers for automated nanomechanical profiling of tumours. Bioengineering (Basel), 2024, 11(3): 237.
|
24. |
石慧娟, 刘旭斌, 康继辉, 等. 开展临床病理 "一对一" 教学培养独立行医的病理医生. 中国毕业后医学教育, 2020, 4(5): 435-438.Shi HJ, Liu XB, Kang JH, et al. Pathology doctors capable of independent practice trained by one-to-one teaching in clinic pathology. Chin J Grad Med Educ, 2020, 4(5): 435-438.
|
25. |
Walsh E, Orsi NM. The current troubled state of the global pathology workforce: A concise review. Diagn Pathol, 2024, 19(1): 163.
|
26. |
Wolfe C, Phillips R, Laheru D, Fisher R. DP02 (P30) declining staff numbers and increasing workload: Is there a solution? Br J Dermatol, 2023, 188(Suppl 4): ljad113.
|
27. |
Savala R, Dey P, Gupta N. Artificial neural network model to distinguish follicular adenoma from follicular carcinoma on fine needle aspiration of thyroid. Diagn Cytopathol, 2018, 46(3): 244-249.
|
28. |
Chang YH, Shin CM, Lee HD, et al. Real-world application of artificial intelligence for detecting pathologic gastric atypia and neoplastic lesions. J Gastric Cancer, 2024, 24(3): 327-340.
|
29. |
Ruan J, Xu S, Chen R, et al. EMLI-ICC: An ensemble machine learning-based integration algorithm for metastasis prediction and risk stratification in intrahepatic cholangiocarcinoma. Brief Bioinform, 2022, 23(6): bbac450.
|
30. |
Wang X, Zhao J, Marostica E, et al. A pathology foundation model for cancer diagnosis and prognosis prediction. Nature, 2024, 634(8035): 970-978.
|
31. |
Silva-Aravena F, Núñez Delafuente H, Gutiérrez-Bahamondes JH, et al. A hybrid algorithm of ML and XAI to prevent breast cancer: A strategy to support decision making. Cancers (Basel), 2023, 15(9): 2443.
|
32. |
Kumar S, Das A. Peripheral blood mononuclear cell derived biomarker detection using explainable artificial intelligence (XAI) provides better diagnosis of breast cancer. Comput Biol Chem, 2023, 104: 107867.
|
33. |
Al-Antari MA, Al-Masni MA, Choi MT, et al. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Int J Med Inform, 2018, 117: 44-54.
|
34. |
Rabiei R, Ayyoubzadeh SM, Sohrabei S, et al. Prediction of breast cancer using machine learning approaches. J Biomed Phys Eng, 2022, 12(3): 297-308.
|