ObjectiveTo discuss the main auxiliary inspection methods and their guiding significance for inguinal hernia.MethodsBy searching literatures and international guidelines, to review the main auxiliary examination methods, such as ultrasound, CT, and MRI.ResultsClinical physical examination combined with ultrasound could increase diagnostic sensitivity. CT could provide surgeons with a better sense of wholeness and structural details, and could be used as a guide for specific types of inguinal hernia. The soft tissue recognition of MRI was good, and it had a good effect on the identification of hidden hernia, mesh conditions, and tissue inflammation.ConclusionEach examination has its own advantages, and should be selected based on clinical practice and medical center conditions.
We update the "2021 expert consensus on clinical pathway for transcatheter aortic valve replacement in China" using the Delphi method. By searching for evidence related to the clinical pathways of transcatheter aortic valve replacement (TAVR) in PubMed, CIKI, and Wanfang Database over the past four years, 35 core viewpoints were proposed in four directions: TAVR team composition and clinical evaluation, perioperative imaging assessment, surgical process, and perioperative and postoperative long-term management of patients. The specific updates include: refining the responsibilities and composition of the TAVR team, clarifying the steps and content of clinical evaluation; emphasizing the core position of CT in perioperative imaging assessment, and introducing the application of new technologies such as artificial intelligence, numerical simulation, and 3D printing; optimizing the TAVR surgical process, including anesthesia selection, access establishment, valve selection and release, and others; and proposing management strategies for special types of patients (such as emergency TAVR, simplified TAVR, pure aortic regurgitation, combined coronary heart disease and atrial fibrillation). In addition, the consensus also emphasizes the importance of postoperative follow-up and rehabilitation, and provides detailed antithrombotic and rehabilitation guidance. The update of this consensus will further promote the standardized development of TAVR technology in China and improve clinical treatment effects.
ObjectiveTo study the anatomical characteristics of blood vessels in the lateral segment of the vertebral body through the surgical approach of oblique lumbar interbody fusion (OLIF) using MRI imaging, and evaluate its potential vascular safety zone. Methods The lumbar MRI data of 107 patients with low back and leg pain who met the selection criteria between October 2019 and November 2022 were retrospectively analyzed. The vascular emanation angles, vascular travel angles, and the length of vessels in the lateral segments of the left vertebral body of L1-L5, as well as the distance between the segmental vessels in different Moro junctions of the vertebral body and their distances from the edges of the vertebrae in the same sequence (bottom marked as I, top as S) were measured. The gap between the large abdominal vessels and the lateral vessels of the vertebral body was set as the lateral vascular safe zones of the lumbar spine, and the extent of the safe zones (namely the area between the vessels) was measured. The anterior 1/3 of the lumbar intervertebral disc was taken as the simulated puncture center, and the area with a diameter of 22 mm around it as the simulated channel area. The proportion of vessels in the channel was further counted. In addition, the proportions of segmental vessels at L5 without a clear travel and with an emanation angel less than 90° were calculated. Results Except for the differences in the vascular emanation angles between L4 and L5, the vascular travel angles between L1, L2 and L4, L5, and the length of vessels in the lateral segments of the vertebral body among L1-L4 were not significant (P>0.05), the differences in the vascular emanation angles, vascular travel angles, and the length of vessels between the rest segments were all significant (P<0.05). There was no significant difference in the distance between vessels of L1, L2 and L2, L3 at Moro Ⅰ-Ⅳ junctions (P>0.05), in L3, L4 and L4, L5 at Ⅱ and Ⅲ junction (P>0.05). There was no significant difference in the vascular distance of L2, L3 between Ⅱ, Ⅲ junction and Ⅲ, Ⅳ junction, and the vascular distance of L3, L4 between Ⅰ, Ⅱ junction and Ⅲ, Ⅳ junction (P>0.05). The vascular distance of the other adjacent vertebral bodies was significant different between different Moro junctions (P<0.05). Except that there was no significant difference in the distance between L2I and L3S at Ⅰ, Ⅱ junction, L3I and L4S at Ⅱ, Ⅲ junction, and L2I and L3S at Ⅲ, Ⅳ junction (P>0.05), there was significant difference of the vascular distance between the bottom of one segment and the top of the next in the other segments (P<0.05). Comparison between junctions: Except for the L3S between Ⅰ, Ⅱ junction and Ⅱ, Ⅲ junction, and L5S between Ⅰ, Ⅱ junction and Ⅱ, Ⅲ and Ⅲ, Ⅳ junctions had no significant difference (P>0.05), there were significant differences in the distance between the other segmental vessels and the vertebral edge of the same sequence in different Moro junctions (P<0.05). The overall proportion of vessels in the simulated channels was 40.19% (43/107), and the proportion of vessels in L1 (41.12%, 44/107) and L5 (18.69%, 20/107) was higher than that in the other segments. The proportion of vessels in the channel of Moro zone Ⅰ (46.73%, 50/107) and zone Ⅱ (32.71%, 35/107) was higher than that in the zone Ⅲ, while no segmental vessels in L1 and L2 were found in the channel of zone Ⅲ (χ2=74.950, P<0.001). Moreover, 26.17% (28/107) of the segmental vessels of lateral L5 showed no movement, and 27.10% (29/107) vascular emanation angles of lateral L5 were less than 90°. Conclusion L1 and L5 segmental vessels are most likely to be injured in Moro zones Ⅰ and Ⅱ, and the placement of OLIF channels in L4, 5 at Ⅲ, Ⅳ junction should be avoided. It is usually safe to place fixation pins at the vertebral body edge on the cephalic side of the intervertebral space, but it is safer to place them on the caudal side in L1, 2 (Ⅰ, Ⅱ junction), L3, 4 (Ⅲ, Ⅳ junction), and L4, 5 (Ⅱ, Ⅲ, Ⅳ junctions).
Fibropolycystic liver diseases (FLDs) is a rare genetic disorder, including bile duct hamartomas, congenital hepatic fibrosis, polycystic liver disease, Caroli’s disease, and choledochal cysts. Fibropolycystic liver diseases has received little clinical attention and exhibits a variety of imaging manifestations, leading to a high likelihood of missed diagnosis and misdiagnosis. Through this case, we delineate the characteristic imaging manifestations of the disease and its underlying pathological mechanisms. Our objective is to enhance readers' comprehension of the disease and thereby reduce the rate of missed diagnosis and misdiagnosis of the disease.
Objective To study the clinical and CT findings of bronchiolar adenoma. Methods Patients diagnosed with bronchiolar adenoma confirmed by surgical pathology at Linyi People's Hospital and Yantai Yuhuangding Hospital from 2016 to 2021 were collected. Their clinical and CT imaging features were retrospectively analyzed. ResultsFinally, 25 patients were collected, including 6 males and 19 females, aged 32-73 (58.6±10.1) years. The immunohistochemical Ki-67 (MIB1) of all lesions was <5%. The lesions were located in the upper and middle lobe of both lungs in 9 patients, lower lobes in 16 patients, extrapulmonary zone in 22 patients, intrapulmonary middle zone in 3 patients, round in 11 patients, irregular in 14 patients, well-defined in 22 patients, pure ground-glass/mixed ground-glass nodules in 6 patients, solid nodules in 19 patients. There were 11 patients with central small cavity, 18 patients with single bronchioles sign, 19 patients without adhesion with adjacent pleura, and 24 patients without mediastinal lymph node enlargement. ConclusionBronchiolar adenomas usually occur in the middle-aged and elderly, mostly in the lower lobe of both lungs and the distribution of the peripheral lung field, most of the patients do not have any clinical symptoms, and the postoperative prognosis is good. CT may show large nodules or masses, pure ground-glass/mixed ground-glass nodules, irregular solid nodules and central small cavities. Irregular stellate nodules, central small cavity shadow, and single bronchiolar vascular bundle connected with the lesions are relatively specific imaging findings of bronchiolar adenoma.
ObjectiveTo understand risk factors of abdominal aortic aneurysm (AAA) rupture and the latest progress.MethodThe domestic and foreign related literatures on risk factors affecting AAA rupture were retrieved and reviewed.ResultsBesides some definite risk factors of AAA rupture, including age, gender, hypertension, smoking, family history, complications (such as diabetes mellitus, hypertension, dyslipidemia, etc.), the biomechanical factor was the crucial factor of AAA rupture, including the aortic compliance, aortic wall peak value of pressure, aortic wall calcification, and hemodynamics. The latest imaging methods such as the high resolution ultrasound, function and molecular imaging, and phase contrast magnetic resonance imaging could provide technical supports for the prediction of AAA rupture.ConclusionsThere are many risk factors affecting AAA rupture. Clinicians might prevent and make individualize treatment for AAA rupture according to its risk factors, and risks of AAA rupture could be more accurately assessed with help of new medical imaging examination.
Objective To review the value of imaging assessment for perioperative period of liver transplantation. Methods The related literatures in recent years were reviewed, and the applications of various kinds of radiological techniques in perioperative period of liver transplantation and radiological strategies of major complications after liver transplantation were summarized. Results Transplantation has become an effective option for treatment of patients with irreversible severe liver dysfunction. Radiological assessment supplies prompt and accurate information for clinic to increase the success rate and reduce the complications. So it plays an irreplaceable role. Conclusions Radiology assessment is important for screening donors and recipients before liver transplantation, following up and monitoring the complications. The doctor of imaging department could grasp the different imaging appearance in perioperative period of liver transplantation.
ObjectiveTo summarize the current status and update of the use of medical imaging in risk prediction of pancreatic fistula following pancreaticoduodenectomy (PD).MethodA systematic review was performed based on recent literatures regarding the radiological risk factors and risk prediction of pancreatic fistula following PD.ResultsThe risk prediction of pancreatic fistula following PD included preoperative, intraoperative, and postoperative aspects. Visceral obesity was the independent risk factor for clinically relevant postoperative pancreatic fistula (CR-POPF). Radiographically determined sarcopenia had no significant predictive value on CR-POPF. Smaller pancreatic duct diameter and softer pancreatic texture were associated with higher incidence of pancreatic fistula. Besides the surgeons’ subjective intraoperative perception, quantitative assessment of the pancreatic texture based on medical imaging had been reported as well. In addition, the postoperative laboratory results such as drain amylase and serum lipase level on postoperative day 1 could also be used for the evaluation of the risk of pancreatic fistula.ConclusionsRisk prediction of pancreatic fistula following PD has considerable clinical significance, it leads to early identification and early intervention of the risk factors for pancreatic fistula. Medical imaging plays an important role in this field. Results from relevant studies could be used to optimize individualized perioperative management of patients undergoing PD.
Objective To investigate the correlation of intracranial arachnoid cyst (IAC) with epilepsy and the possible mechanism of seizure induced by IAC. Methods Patients with IAC, who were treated in West China Hospital of Sichuan University between January 2009 and January 2019, were included and divided into IAC with epilepsy group and IAC without epilepsy group according to whether they were diagnosed with epilepsy. We collected the IAC location information of all subjects after the establishment of a three-dimensional spatial coordinate system of MRI images. Computational fluid dynamics technology was used to establish a blood vessel model in cyst area and perform hemodynamic analysis basing on contrast-enhanced CT images. Results A total of 72 patients were enrolled, including 24 in the IAC with epilepsy group and 48 in the IAC without epilepsy group. There was no significant difference between the two groups in terms of sex, age, IAC location, the volumes or the maximum diameters of IAC (P>0.05). Consecutive areas formed by the seven high-risk areas found in the IAC with epilepsy group were located in the temporal area. The seven high-risk areas were simultaneous IAC location in 5 patients in the IAC with epilepsy group and in 1 patient in the IAC without epilepsy group, and the difference was statistically significant (χ2=5.114, P=0.024). Comparison of the hemodynamic parameters between the two types of vascular models revealed similar pressure changes and blood pressure parameters, with lower blood flow and higher mean vascular wall shear stress in the IAC with epilepsy group. Conclusions IAC may cause epilepsy by increasing adjacent blood vessel stenosis and blood vessel wall shear stress through cyst space-occupying effect. The most common location of IAC with epilepsy is the temporal area. The occupying effect of IAC should be considered in the location of epileptogenic foci before surgery for IAC patients with epilepsy.