Objective:To observe the effect of beta;estradiol on gluta mate concentration in rabbitsprime; retinae injured by ischemic reperfusion. Methods:Twenty r abbits ware randomly divided into two groups, the control group and the treatmen t group, with 10 rabbits in each group. Before examined by binocular flash elect roretinography (FERG), retinal ischemic reperfusion (RIR) model was induced in t h e right eyes of all the rabbits by increasing intraocular pressure to 120 mm Hg for 60 minutes; the left eyes were as the control eyes. The rabbits were hypoder mically injected with beta;estradiol (0.1 mg/kg) in treatment group and with phys i ological saline in the control group 2 hours before ischemia. The results of FER G of the right eyes in both of the 2 groups 0, 4, 8, and 24 hours after reperfus ion were record respectively and were compared with the results of FERG before r eperfusion. The retina tissue was collected after the last time of FERG. The con c entration of glutamate was detected by Hitachi L8800 amino acid analyzer. Results:In the right eyes in both of the 2 groups, the result of F ERG showed a beeli ne just after reperfusion. There was no significant difference of awave amplit u de between the 2 groups (t=1.357, 0.798, 0.835; Pgt;0.05); the b wave amplitudes i n experimental group were much higher than those in the control group (t=4.447, 2.188, 3.106; Plt;0.01). The concentration of glutamate in retina was (0.265plusmn;0.014) g/L in the right eyes and (0.207plusmn;0.013) g/L in the left eyes in the control group, and (0.231plusmn;0.007) g/L in the right eyes and (0.203plusmn;0 .014) g/L in the le ft eyes in the treatment group; the difference between the 2 groups was signific ant (F=50.807, P=0.000). There was statistical difference between righ t and left eyes both in the 2 groups and the significant difference of the right eyes betw een the two groups was also found (P=0.000); there was no statistical diffe rence of the left eyes between the 2 groups (P=0.505). Conclusion:beta;-estradiol may prevent the increase of the concentration of glutamate in retina induced by RIR to protect retinal tissue.
Objective To evaluate the inhibiting effect of adenosine on rat retinal ganglion cells (RGC) death induced by P2X7 and N-methyl-D-aspartate (NMDA) receptor. Methods (1) Long-Evan neonatal rats were back labeled with aminostilbamidine to identify RGC. The viability of RGC affected by P2X7 excitomotor BzATP (50 mu;mol/L), glutamate receptor excitomotor NMDA (100 mu;mol/L) and adenosine (300 mu;mol/L) was detected. (2) RGC from the retinae of unlabeled neonatal rats were cultured in vitro. After labeled with Fura-2 methyl acetate, an intracellular calcium indicator, the effect of BzATP, NMDA and adenosine on intracellular Ca2+ level was detected byCa2+ imaging system. Results Both BzATP (50 mu;mol/L) and NMDA(100 mu;mol/L) could kill about 30% of the RGC. Cell death was prevented by adenosine (300 mu;mol/L) with the cell viability increased from (68.9plusmn;2.3)% and (69.9plusmn;3.2)% to (91.2plusmn;3.5)% (P<0.001) and (102.1plusmn;3.9)% (P<0.001), respectively. BzATP (50 mu;mol/L) led to a large, sustained increase of intracellular Ca2+ concentration to (1183plusmn;109) nmol/L. After the adenosine intervened, Ca2+ concentration increased slightly to (314plusmn;64) nmol/L (P<0.001). Conclusion Adenosine may prevent RGC death and increase of intracellular Ca2+ concentration from P2X7and NMDA receptor stimulation. (Chin J Ocul Fundus Dis, 2007, 23: 133-136)
Objective To observe the regulation effect of transforming growth factor alpha (TGFalpha;) on expression of glutamate transporter(GLAST)and ingestion activity of retinal Muuml;ller cells in mice. Methods To take the retinal tissue of Kunming mouse at postnatal 7~10 day, and then cultured Muuml;ller cells according to literature. The 3~4 generation cultured cells of the same primary cell were divided into two groups at random: ① TGFalpha; group: maintained in different concentrations of TGFalpha; as 50, 75, 125 and 150 ng/ml, 3 holes in each concentration;② Control group: cultured by Eagle culture medium which improved from Dulbeccon and contained 20% fetal calf serum. The influence of different concentrations TGFalpha; on GLAST activity in Muuml;ller cells were observed by L-3H-glutamate uptake detection; the expression of GLAST mRNA in Muuml;ller cells was determined by RT-PCR; the expression of GLAST protein was detected with immunocytochemical staining. Results With the increase of TGFalpha; concentration, both L3H glutamate uptake and GLAST mRNA expression were increased. The L-3H-glutamate accumulation had got to the maximum uptake at concentration of 125 ng/ml, which was 266% of that in control group, meanwhile, the expressions of GLAST mRNA also got to the maximum as 4 times of control group. Immunocytochemical staining indicated that the effect of 125ng/ml TGFalpha; on expression of GLAST protein was higher than that in the control group, the differences between two groups were statistically significant (Plt;0.05). Conclusion TGF-alpha; can increase GLAST activity through up-regulating the expression of GLAST mRNA and protein.
Transcranial magnetic stimulation (TMS) as a noninvasive neuromodulation technique can improve the impairment of learning and memory caused by diseases, and the regulation of learning and memory depends on synaptic plasticity. TMS can affect plasticity of brain synaptic. This paper reviews the effects of TMS on synaptic plasticity from two aspects of structural and functional plasticity, and further reveals the mechanism of TMS from synaptic vesicles, neurotransmitters, synaptic associated proteins, brain derived neurotrophic factor and related pathways. Finally, it is found that TMS could affect neuronal morphology, glutamate receptor and neurotransmitter, and regulate the expression of synaptic associated proteins through the expression of brain derived neurotrophic factor, thus affecting the learning and memory function. This paper reviews the effects of TMS on learning, memory and plasticity of brain synaptic, which provides a reference for the study of the mechanism of TMS.
Objective To investigate the glutamate toxicity on inner stratum retinal neurons(ISRN) and the neurotoxicity quantity-efficacy relation. Method Retinal explants obtained from 30 neonatal mices were implanted into two pieces of 24-well culture plates (48 wells). The 48 wells were divided into three groups: control group, glutamate exposure 24 h group, and glutamate exposure with further lasting 6 h group. The retinal explants were sectioned, and then stained with HE after 24 h in vitro. The cells in retinal ganglion cells (RGCs) layer and inner nuclear layer (INL) were analyzed by light microscope at 1 000times; magnification , and the number of normal morphological cells was counted under three 1 000times; magnificat ion fields. Results Some cells in ISRN (include RGCs and INL c ells) showed pykno tic nuclei and necrosis after 24 h in control culture. Glutamate exposure 24 h group:at the 2 mmol and 4 mmol concentrations of glutamate, the situation of the normal morphological cells in ISRN had no difference from that of the control group (Pgt;0.05). At the concentration of glutamate more than or equal to 6 mmol, the number of normal morphological cells in ISRN was significantly less than that of the control group (Plt;0.05), and with the increase of glutamate concentration, the number of normal morphological cells was reduced. Glutamate exposure with fur ther lasting 6 h group: at the concentration of glutamate equal to 6 mmol, the n umber of normal morphological cells in INL was significantly less than that of the control group (Plt;0.05), while the number of normal morphological cells in RGCs layer had no difference between two groups (Pgt;0.05). At the concentration of glutamate more than or equal to 8 mmol, the number of normal morphological cels in RGC s layer and INL was significantly less than that of the control group (Plt;0.05 ). Conclusion Glutamate has the neurotoxicity for ISRN in vitro, and the effect is dose-dependant. (Chin J Ocul Fundus Dis, 2001,17:311-314)
Objective To investigate the effect of pigment epitheliumderived factor (PEDF)on the expression of glutamine synthetase in retinal Muuml;ller cells of diabetic rats.Methods Diabetic rats were induced with streptozotocin injection.Before and after injection of 10 mu;l (0.1 mu;g/mu;l) PEDF (experimental group) or 10 mu;l PBS (control group) into the vitreous cavities of diabetic rats respectively for 48 hours,the expressions of GS and IL-1beta; in retina were analyzed by immunohistochemistry and real time RTPCR techniques. After being treated with 100 ng/ml PEDF for 24 hours in high glucose conditions,the expressions of GS and IL-1beta; in cultured Muuml;ller cells were studied by western blot and real time RT-PCR techniques. Apoptosis was analyzed by flow cytometry after Annexin V fluorescein isothiocyanate/Propidium idoium (Annexin V-FITC/PI) staining.Results By immunohistochemistry (the protein level) and real time RT-PCR (the mRNA level),it was found that the expression of GS decreased and the expression of IL-1beta; increased obviously (real time RT-PCR:GS:t=4.23,P<0.01;IL-1beta;:t=16.73,P<0.01;immunohistochemistry:GS: t=5.13,P<0.01;IL-1beta;:t=9.32,P<0.01) in diabetic rats. After injection of 10 mu;l (0.1 mu;g/mu;l) PEDF into the vitreous cavities of diabetic rats for 48 hours,it was found that the expression of GS increased and the expression of IL-1beta; decreased significantly(RT-PCR GS:t=3.87,P<0.01IL-1beta;:t=3.61,P<0.05;immunohistochemistry:GS:t=3.32, P<0.05;IL-1beta;: t=2.63,P<0.05). Under high glucose conditions, 100 ng/ml PEDF induced decreasing expression of IL-1beta; and increasing expression of GS significantly (RT-PCR:GS: t=2.89, P<0.05;IL-1beta;: t=3.37,P<0.05;Western blot:GS:t=2.66,P<0.05;IL-1beta;:t=3.23,P<0.05).Apoptosis of Muuml;ller cells under high glucose conditions was inhibited significantly by the treatment with 100 nmol/ml PEDF (t=3.21,P<0.05). Conclusions In diabetic rats,PEDF may decrease expression of IL-1beta; in rat retinal Muuml;ller cells, which may result in increasing expression of GS.To some degree,it inhibits possibly the death of retinal ganglion cells.
Purpose To investigate the roles of vascular endothelial growth factor (VEGF),glutamate and gamma;- aminobutyric acid (GABA) in neovascularization of proliferative diabetic retinopathy (PDR). Methods Vitreous samples were collected from 25 patients (27 eyes)with PDR and 14 patients (14 eyes) with idiopathic macular hole.VEGF levels were determined by ELISA.Amino acids analyses were performed by high-performance liquid chromatography. Results Patients with PDR had significantly higher concentrations of VEGF (median 0.41 ng/ml,quartile 0.54 ng/ml) than controls (median 0.017 ng/ml,quartile 0.01 ng/ml)(Plt;0.001).The levels of glutamate [(11.7plusmn;3.0) mu;mol/L] and GABA [(7.2plusmn;3.9mu;mol/L)] were also higher in patients with PDR than glutamate [(5.8plusmn;0.7) mu;mol/L] and GABA [(3.3plusmn;2.9) mu;mol/L) in controls (Plt;0.05).The glutamate level and GABA level had a significantly positive correlation with VEGF level. Conclusions The increased levels of glutamate and GABA indicate retinal ischemia.The correlations of glutamate and GABA levels with an elevated VEGF level provide biochemical support for ischemi induced neovascularization in patients with PDR.The findings present novel modalities in treatment of PDR. (Chin J Ocul Fundus Dis,2000,16:162-165)
目的:评价免疫印迹法检测胰岛自身抗体(GAD-A、ICA、IAA)与酶联免疫法测ICA、GAD-A放射免疫法测IAA结果的一致性。方法:采用免疫印迹法测定81例糖尿病患者胰岛自身抗体,将结果与酶联免疫法测定的GAD-A、ICA,放射免疫法测定IAA结果进行比较。结果:免疫印迹法阳性检出率为:GAD-A 51.8%,ICA 18.5%,IAA 27.1%;酶联免疫法(GAD-A、ICA)、放射免疫法(IAA)阳性检出率:GAD-A 32.1%,ICA 34.5%,IAA 30.8%;上述两组结果进行比较,两组相比ICA和GAD-A有统计学差异(Plt;0.05),IAA无统计学差异。两组结果一致率比较:GAD-A 50.6%,ICA 64.2%,IAA 69.1%。结论:与临床常用酶联免疫法检测GAD-A、ICA,放射免疫法检测IAA比较,免疫印迹法和酶联免疫法在ICA及GAD-A阳性检出率上的差异有显著性,和放射免疫法在IAA阳性检出率上差异无显著性。