With the rapid development of artificial intelligence (AI), especially deep learning, AI research in the field of ophthalmology has presented a trend of diversification in disease types, generalization in scenarios and deepening in researches. The AI algorithm has showed a good performance in the studies of diabetic retinopathy, age-related macular degeneration, glaucoma and other ocular diseases, yielding up the great potential of ophthalmic AI. However, most studies are still in their infancy, and the application of ophthalmic AI still faces many challenges such as lack of interpretability for results, deficiency of data standardization, and insufficiency of clinical applicability. At the same time, it should also be noted that the development of multi-modal imaging, the innovation of digital technologies (such as 5G and the Internet of Things) and telemedicine, and the new discovery that retina status can reflect systemic diseases have brought new opportunities for the development of ophthalmic AI. Learn the current status of AI research in the field of ophthalmology, grasp the new challenges and opportunities in its development process, successfully realizing the transformation of ophthalmic AI from research to practical application.
High myopia has become a global public health issue, posing a significant threat to visual health. There are still some problems in the process of diagnosis and treatment, including the definition of high myopia and pathological myopia, opportunities and challenges of artificial intelligence in the diagnosis and treatment system, domestic and international collaboration in the field of high myopia, the application of genetic screening in children with myopia and high myopia patients, and the exploration of new treatment methods for high myopia. Nowadays, myopia and high myopia show the characteristics of early onset age and sharp rise in prevalence, and gradually become the main cause of low vision and irreversible blindness in young and middle-aged people. Therefore, it is of great significance to accurately define high myopia and pathological myopia, combine artificial intelligence and other methods for screening and prevention, promote cooperation in different fields, strengthen gene screening for early-onset myopia and adopt new and effective ways to treat it.
Cardiovascular diseases are the leading cause of death and their diagnosis and treatment rely heavily on the variety of clinical data. With the advent of the era of medical big data, artificial intelligence (AI) has been widely applied in many aspects such as imaging, diagnosis and prognosis prediction in cardiovascular medicine, providing a new method for accurate diagnosis and treatment. This paper reviews the application of AI in cardiovascular medicine.
Sample size calculation is an important factor to evaluate the reliability of the diagnostic test. In this paper, a case study of the clinical diagnostic test of artificial intelligence for identification of liver contrast-enhanced ultrasound was performed to conduct two-category and multi-categories studies. Based on sensitivity and specificity, the sample size was then estimated in combination with the statistical characteristics of disease incidence, test level and one/two-sided test. Eventually, the sample size was corrected by integrating the factors of the proportion of training/test dataset and the dropout rate of cases in the medical image recognition system. Moreover, the application of Sample Size Calculator, MedCalc, PASS, and other software can accelerate sample size calculation and reduce the amount of labor.
For the past few years, artificial intelligence (AI) technology has developed rapidly and has become frontier and hot topics in medical research. While the deep learning algorithm based on artificial neural networks is one of the most representative tool in this field. The advancement of ophthalmology is inseparable from a variety of imaging methods, and the pronounced convenience and high efficiency endow AI technology with promising applications in screening, diagnosis and follow-up of ophthalmic diseases. At present, related research on ophthalmologic AI technology has been carried out in terms of multiple diseases and multimodality. Many valuable results have been reported aiming at several common diseases of ophthalmology. It should be emphasized that ophthalmic AI products are still faced with some problems towards practical application. The regulatory mechanism and evaluation criteria have not yet integrated as a standardized system. There are still a number of aspects to be optimized before large-scale distribution in clinical utility. Briefly, the innovation of ophthalmologic AI technology is attributed to multidisciplinary cooperation, which is of great significance to China's public health undertakings, and will be bound to benefit patients in future clinical practice.
ObjectiveTo evaluate the diagnostic value of artificial intelligence (AI)-assisted diagnostic system for pulmonary cancer based on CT images.MethodsDatabases including PubMed, The Cochrane Library, EMbase, CNKI, WanFang Data and Chinese BioMedical Literature Database (CBM) were electronically searched to collect relevant studies on AI-assisted diagnostic system in the diagnosis of pulmonary cancer from 2010 to 2019. The eligible studies were selected according to inclusion and exclusion criteria, and the quality of included studies was assessed and the special information was identified. Then, meta-analysis was performed using RevMan 5.3, Stata 12.0 and SAS 9.4 softwares. The sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and diagnostic odds ratio were pooled and the summary receiver operating characteristic (SROC) curve was drawn. Meta-regression analysis was used to explore the sources of heterogeneity.ResultsTotally 18 studies were included with 4 771 patients. Random effect model was used for the analysis due to the heterogeneity among studies. The results of meta-analysis showed that the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnosis odds ratio and area under the SROC curve were 0.87 [95%CI (0.84, 0.90)], 0.89 [95%CI (0.84, 0.92)], 7.70 [95%CI (5.32, 11.15)], 0.14 [95%CI (0.11, 0.19)], 53.54 [95%CI (30.68, 93.42)] and 0.94 [95%CI (0.91, 0.95)], respectively.ConclusionAI-assisted diagnostic system based on CT images has high diagnostic value for pulmonary cancer, and thus it is worthy of clinical application. However, due to the limited quality and quantity of included studies, above results should be validated by more studies.
Ophthalmic imaging examination is the main basis for early screening, evaluation and diagnosis of eye diseases. In recent years, with the improvement of computer data analysis ability, the deepening of new algorithm research and the popularization of big data platform, artificial intelligence (AI) technology has developed rapidly and become a hot topic in the field of medical assistant diagnosis. The advantage of AI is accurate and efficient, which has great application value in processing image-related data. The application of AI not only helps to promote the development of AI research in ophthalmology, but also helps to establish a new medical service model for ophthalmic diagnosis and promote the process of prevention and treatment of blindness. Future research of ophthalmic AI should use multi-modal imaging data comprehensively to diagnose complex eye diseases, integrate standardized and high-quality data resources, and improve the performance of algorithms.
This review describes the concept of artificial intelligence, introduces the working mechanism and the main structure of medical expert system, as well as the development history of medical expert system at home and abroad and its applications in the medical field. The concept of machine learning, commonly used algorithms and its clinical applications in medical diagnosis are briefly described. It mainly introduces the application of artificial intelligence in neurology. The advantages and disadvantages of artificial intelligence system in medical field are analyzed. Finally, the future of artificial intelligence in the medical field is forecasted.
Compared with traditional medical devices, artificial intelligence medical devices face greater challenges in the process of clinical trials due to their related characteristics of artificial intelligence technology. This paper focused on the challenges and risks in each stage of clinical trials on artificial intelligence medical devices for assisted diagnosis, and put forward corresponding coping strategies, with the aim to provide references for the performance of high-quality clinical trials on artificial intelligence medical devices and shorten the research period in China.
Stroke is a kind of cerebrovascular disease with high incidence and disability rate. Motor dysfunction and cognitive dysfunction are common dysfunctions of stroke. Rehabilitation treatment can effectively reduce the disability rate of stroke and improve the quality of life. The short-term hospitalization and ambulatory rehabilitation treatment cannot meet the rehabilitation needs of stroke patients. Cloud rehabilitation is one of the ways to solve this problem. This article introduces the definition and application of cloud rehabilitation and artificial intelligence (including assisted rehabilitation assessment and assisted rehabilitation treatment), and summarizes the current problems in the development of stroke cloud rehabilitation in China, so as to promote the construction of remote rehabilitation based on artificial intelligence in China and provide some references for the selection of rehabilitation programs for patients with stroke.