west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Brain-computer interface" 35 results
  • Research on phase modulation to enhance the feature of high-frequency steady-state asymmetric visual evoked potentials

    High-frequency steady-state asymmetric visual evoked potential (SSaVEP) provides a new paradigm for designing comfortable and practical brain-computer interface (BCI) systems. However, due to the weak amplitude and strong noise of high-frequency signals, it is of great significance to study how to enhance their signal features. In this study, a 30 Hz high-frequency visual stimulus was used, and the peripheral visual field was equally divided into eight annular sectors. Eight kinds of annular sector pairs were selected based on the mapping relationship of visual space onto the primary visual cortex (V1), and three phases (in-phase[0º, 0º], anti-phase [0º, 180º], and anti-phase [180º, 0º]) were designed for each annular sector pair to explore response intensity and signal-to-noise ratio under phase modulation. A total of 8 healthy subjects were recruited in the experiment. The results showed that three annular sector pairs exhibited significant differences in SSaVEP features under phase modulation at 30 Hz high-frequency stimulation. And the spatial feature analysis showed that the two types of features of the annular sector pair in the lower visual field were significantly higher than those in the upper visual field. This study further used the filter bank and ensemble task-related component analysis to calculate the classification accuracy of annular sector pairs under three-phase modulations, and the average accuracy was up to 91.5%, which proved that the phase-modulated SSaVEP features could be used to encode high- frequency SSaVEP. In summary, the results of this study provide new ideas for enhancing the features of high-frequency SSaVEP signals and expanding the instruction set of the traditional steady state visual evoked potential paradigm.

    Release date:2023-08-23 02:45 Export PDF Favorites Scan
  • Neurofeedback technology based on functional near infrared spectroscopy imaging and its applications

    Neurofeedback (NF) technology based on electroencephalogram (EEG) data or functional magnetic resonance imaging (fMRI) has been widely studied and applied. In contrast, functional near infrared spectroscopy (fNIRS) has become a new technique in NF research in recent years. fNIRS is a neuroimaging technology based on hemodynamics, which has the advantages of low cost, good portability and high spatial resolution, and is more suitable for use in natural environments. At present, there is a lack of comprehensive review on fNIRS-NF technology (fNIRS-NF) in China. In order to provide a reference for the research of fNIRS-NF technology, this paper first describes the principle, key technologies and applications of fNIRS-NF, and focuses on the application of fNIRS-NF. Finally, the future development trend of fNIRS-NF is prospected and summarized. In conclusion, this paper summarizes fNIRS-NF technology and its application, and concludes that fNIRS-NF technology has potential practicability in neurological diseases and related fields. fNIRS can be used as a good method for NF training. This paper is expected to provide reference information for the development of fNIRS-NF technology.

    Release date:2022-12-28 01:34 Export PDF Favorites Scan
  • Design and preliminary application of outdoor flying pigeon-robot

    Control at beyond-visual ranges is of great significance to animal-robots with wide range motion capability. For pigeon-robots, such control can be done by the way of onboard preprogram, but not constitute a closed-loop yet. This study designed a new control system for pigeon-robots, which integrated the function of trajectory monitoring to that of brain stimulation. It achieved the closed-loop control in turning or circling by estimating pigeons’ flight state instantaneously and the corresponding logical regulation. The stimulation targets located at the formation reticularis medialis mesencephali (FRM) in the left and right brain, for the purposes of left- and right-turn control, respectively. The stimulus was characterized by the waveform mimicking the nerve cell membrane potential, and was activated intermittently. The wearable control unit weighted 11.8 g totally. The results showed a 90% success rate by the closed-loop control in pigeon-robots. It was convenient to obtain the wing shape during flight maneuver, by equipping a pigeon-robot with a vivo camera. It was also feasible to regulate the evolution of pigeon flocks by the pigeon-robots at different hierarchical level. All of these lay the groundwork for the application of pigeon-robots in scientific researches.

    Release date:2023-02-24 06:14 Export PDF Favorites Scan
  • Multi-scale feature extraction and classification of motor imagery electroencephalography based on time series data enhancement

    The brain-computer interface (BCI) based on motor imagery electroencephalography (MI-EEG) enables direct information interaction between the human brain and external devices. In this paper, a multi-scale EEG feature extraction convolutional neural network model based on time series data enhancement is proposed for decoding MI-EEG signals. First, an EEG signals augmentation method was proposed that could increase the information content of training samples without changing the length of the time series, while retaining its original features completely. Then, multiple holistic and detailed features of the EEG data were adaptively extracted by multi-scale convolution module, and the features were fused and filtered by parallel residual module and channel attention. Finally, classification results were output by a fully connected network. The application experimental results on the BCI Competition IV 2a and 2b datasets showed that the proposed model achieved an average classification accuracy of 91.87% and 87.85% for the motor imagery task, respectively, which had high accuracy and strong robustness compared with existing baseline models. The proposed model does not require complex signals pre-processing operations and has the advantage of multi-scale feature extraction, which has high practical application value.

    Release date:2023-08-23 02:45 Export PDF Favorites Scan
  • Visual object detection system based on augmented reality and steady-state visual evoked potential

    This study investigates a brain-computer interface (BCI) system based on an augmented reality (AR) environment and steady-state visual evoked potentials (SSVEP). The system is designed to facilitate the selection of real-world objects through visual gaze in real-life scenarios. By integrating object detection technology and AR technology, the system augmented real objects with visual enhancements, providing users with visual stimuli that induced corresponding brain signals. SSVEP technology was then utilized to interpret these brain signals and identify the objects that users focused on. Additionally, an adaptive dynamic time-window-based filter bank canonical correlation analysis was employed to rapidly parse the subjects’ brain signals. Experimental results indicated that the system could effectively recognize SSVEP signals, achieving an average accuracy rate of 90.6% in visual target identification. This system extends the application of SSVEP signals to real-life scenarios, demonstrating feasibility and efficacy in assisting individuals with mobility impairments and physical disabilities in object selection tasks.

    Release date:2024-10-22 02:33 Export PDF Favorites Scan
  • Virtual reality-brain computer interface hand function enhancement rehabilitation system incorporating multi-sensory stimulation

    Stroke is an acute cerebrovascular disease in which sudden interruption of blood supply to the brain or rupture of cerebral blood vessels cause damage to brain cells and consequently impair the patient's motor and cognitive abilities. A novel rehabilitation training model integrating brain-computer interface (BCI) and virtual reality (VR) not only promotes the functional activation of brain networks, but also provides immersive and interesting contextual feedback for patients. In this paper, we designed a hand rehabilitation training system integrating multi-sensory stimulation feedback, BCI and VR, which guides patients' motor imaginations through the tasks of the virtual scene, acquires patients' motor intentions, and then carries out human-computer interactions under the virtual scene. At the same time, haptic feedback is incorporated to further increase the patients' proprioceptive sensations, so as to realize the hand function rehabilitation training based on the multi-sensory stimulation feedback of vision, hearing, and haptic senses. In this study, we compared and analyzed the differences in power spectral density of different frequency bands within the EEG signal data before and after the incorporation of haptic feedback, and found that the motor brain area was significantly activated after the incorporation of haptic feedback, and the power spectral density of the motor brain area was significantly increased in the high gamma frequency band. The results of this study indicate that the rehabilitation training of patients with the VR-BCI hand function enhancement rehabilitation system incorporating multi-sensory stimulation can accelerate the two-way facilitation of sensory and motor conduction pathways, thus accelerating the rehabilitation process.

    Release date:2024-10-22 02:33 Export PDF Favorites Scan
  • An emerging major: brain-computer interface major

    Brain-computer interface (BCI) is a revolutionizing technology that disrupts traditional human-computer interaction by establishing direct communication and control between the brain and computer, bypassing the peripheral nervous and muscular systems. With the rapid advancement of BCI technology, growing application demands, and an increasing need for specialized BCI professionals, a new academic major—BCI major—has gradually emerged. However, few studies to date have discussed the interdisciplinary nature and training framework of this emerging major. To address this gap, this paper first introduced the application demands of BCI, including the demand for BCI technology in both medical and non-medical fields. The paper also described the interdisciplinary nature of the BCI major and the urgent need for specialized professionals in this field. Subsequently, a training program of the BCI major was presented, with careful consideration of the multidisciplinary nature of BCI research and development, along with recommendations for curriculum structure and credit distribution. Additionally, the facing challenges of the construction of the BCI major were analyzed, and suggested strategies for addressing these challenges were offered. Finally, the future of the BCI major was envisioned. It is hoped that this paper will provide valuable reference for the development and construction of the BCI major.

    Release date:2024-12-27 03:50 Export PDF Favorites Scan
  • A review of noninvasive brain-computer interfaces combined with transcranial electrical stimulation for neural rehabilitation

    The rehabilitation of motor dysfunction following stroke remains a major clinical challenge, underscoring the urgent need to develop novel therapeutic strategies to improve functional recovery in patients. Brain-computer interface (BCI) technology has emerged as a cutting-edge approach in neurorehabilitation, demonstrating significant potential for motor function restoration. Transcranial electrical stimulation (tES), a non-invasive neuromodulation technique, can promote neuroplasticity by regulating cortical excitability. In recent years, studies have begun to explore the combination of BCI with tES to synergistically enhance neural remodeling within the central nervous system. This integrated multi-technology strategy is increasingly becoming a key focus in the field of neurorehabilitation. This review systematically summarized recent advances in tES-BCI integrated systems for neurorehabilitation, with a particular emphasis on widely adopted BCI paradigms and tES parameter configurations and stimulation modalities. Based on a comprehensive synthesis of existing evidence, this review summarizes the efficacy of this combined intervention strategy in rehabilitating upper and lower limb motor functions following stroke, highlights the methodological limitations and clinical translation challenges present in current research, and aims to provide insights for mechanistic exploration, system optimization, and clinical translation of integrated BCI-tES technology.

    Release date:2026-02-06 02:05 Export PDF Favorites Scan
  • Evaluation methods for the rehabilitation efficacy of bidirectional closed-loop motor imagery brain-computer interface active rehabilitation training systems

    The bidirectional closed-loop motor imagery brain-computer interface (MI-BCI) is an emerging method for active rehabilitation training of motor dysfunction, extensively tested in both laboratory and clinical settings. However, no standardized method for evaluating its rehabilitation efficacy has been established, and relevant literature remains limited. To facilitate the clinical translation of bidirectional closed-loop MI-BCI, this article first introduced its fundamental principles, reviewed the rehabilitation training cycle and methods for evaluating rehabilitation efficacy, and summarized approaches for evaluating system usability, user satisfaction and usage. Finally, the challenges associated with evaluating the rehabilitation efficacy of bidirectional closed-loop MI-BCI were discussed, aiming to promote its broader adoption and standardization in clinical practice.

    Release date:2025-06-23 04:09 Export PDF Favorites Scan
  • A design and evaluation of wearable p300 brain-computer interface system based on Hololens2

    Patients with amyotrophic lateral sclerosis ( ALS ) often have difficulty in expressing their intentions through language and behavior, which prevents them from communicating properly with the outside world and seriously affects their quality of life. The brain-computer interface (BCI) has received much attention as an aid for ALS patients to communicate with the outside world, but the heavy device causes inconvenience to patients in the application process. To improve the portability of the BCI system, this paper proposed a wearable P300-speller brain-computer interface system based on the augmented reality (MR-BCI). This system used Hololens2 augmented reality device to present the paradigm, an OpenBCI device to capture EEG signals, and Jetson Nano embedded computer to process the data. Meanwhile, to optimize the system’s performance for character recognition, this paper proposed a convolutional neural network classification method with low computational complexity applied to the embedded system for real-time classification. The results showed that compared with the P300-speller brain-computer interface system based on the computer screen (CS-BCI), MR-BCI induced an increase in the amplitude of the P300 component, an increase in accuracy of 1.7% and 1.4% in offline and online experiments, respectively, and an increase in the information transfer rate of 0.7 bit/min. The MR-BCI proposed in this paper achieves a wearable BCI system based on guaranteed system performance. It has a positive effect on the realization of the clinical application of BCI.

    Release date: Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content