Convolutional neural networks (CNNs) are renowned for their excellent representation learning capabilities and have become a mainstream model for motor imagery based electroencephalogram (MI-EEG) signal classification. However, MI-EEG exhibits strong inter-individual variability, which may lead to a decline in classification performance. To address this issue, this paper proposes a classification model based on dynamic multi-scale CNN and multi-head temporal attention (DMSCMHTA). The model first applies multi-band filtering to the raw MI-EEG signals and inputs the results into the feature extraction module. Then, it uses a dynamic multi-scale CNN to capture temporal features while adjusting attention weights, followed by spatial convolution to extract spatiotemporal feature sequences. Next, the model further optimizes temporal correlations through time dimensionality reduction and a multi-head attention mechanism to generate more discriminative features. Finally, MI classification is completed under the supervision of cross-entropy loss and center loss. Experiments show that the proposed model achieves average accuracies of 80.32% and 90.81% on BCI Competition IV datasets 2a and 2b, respectively. The results indicate that DMSCMHTA can adaptively extract personalized spatiotemporal features and outperforms current mainstream methods.
Motor imagery electroencephalogram (EEG) signals are non-stationary time series with a low signal-to-noise ratio. Therefore, the single-channel EEG analysis method is difficult to effectively describe the interaction characteristics between multi-channel signals. This paper proposed a deep learning network model based on the multi-channel attention mechanism. First, we performed time-frequency sparse decomposition on the pre-processed data, which enhanced the difference of time-frequency characteristics of EEG signals. Then we used the attention module to map the data in time and space so that the model could make full use of the data characteristics of different channels of EEG signals. Finally, the improved time-convolution network (TCN) was used for feature fusion and classification. The BCI competition IV-2a data set was used to verify the proposed algorithm. The experimental results showed that the proposed algorithm could effectively improve the classification accuracy of motor imagination EEG signals, which achieved an average accuracy of 83.03% for 9 subjects. Compared with the existing methods, the classification accuracy of EEG signals was improved. With the enhanced difference features between different motor imagery EEG data, the proposed method is important for the study of improving classifier performance.
Clinical grading diagnosis of disorder of consciousness (DOC) patients relies on behavioral assessment, which has certain limitations. Combining multi-modal technologies and brain-computer interface (BCI) paradigms can assist in identifying patients with minimally conscious state (MCS) and vegetative state (VS). This study collected electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) signals under motor BCI paradigms from 14 DOC patients, who were divided into two groups based on clinical scores: 7 in the MCS group and 7 in the VS group. We calculated event-related desynchronization (ERD) and motor decoding accuracy to analyze the effectiveness of motor BCI paradigms in detecting consciousness states. The results showed that the classification accuracies for left-hand and right-hand movement tasks using EEG were 93.28% and 76.19% for the MCS and VS groups, respectively; the classification precisions using fNIRS were 53.72% and 49.11% for these groups. When combining EEG and fNIRS features, the classification accuracies for left-hand and right-hand movement tasks in the MCS and VS groups were 95.56% and 87.38%, respectively. Although there was no statistically significant difference in motor decoding accuracy between the two groups, significant differences in ERD were observed between different consciousness states during left-hand movement tasks (P < 0.001). This study demonstrates that motor BCI paradigms can assist in assessing the level of consciousness, with EEG being more sensitive for evaluating residual motor intention intensity. Moreover, the ERD feature of motor intention intensity is more sensitive than BCI classification accuracy.
The brain-computer interface (BCI) based on motor imagery electroencephalography (MI-EEG) enables direct information interaction between the human brain and external devices. In this paper, a multi-scale EEG feature extraction convolutional neural network model based on time series data enhancement is proposed for decoding MI-EEG signals. First, an EEG signals augmentation method was proposed that could increase the information content of training samples without changing the length of the time series, while retaining its original features completely. Then, multiple holistic and detailed features of the EEG data were adaptively extracted by multi-scale convolution module, and the features were fused and filtered by parallel residual module and channel attention. Finally, classification results were output by a fully connected network. The application experimental results on the BCI Competition IV 2a and 2b datasets showed that the proposed model achieved an average classification accuracy of 91.87% and 87.85% for the motor imagery task, respectively, which had high accuracy and strong robustness compared with existing baseline models. The proposed model does not require complex signals pre-processing operations and has the advantage of multi-scale feature extraction, which has high practical application value.
In order to meet the need of autonomous control of patients with severe limb disorders, this paper designs a nursing bed control system based on motor imagery-brain computer interface (MI-BCI). In view of the low decoding performance of cross-subjects and the dynamic fluctuation of cognitive state in the existing MI-BCI technology, the neural network structure optimization and user interaction feedback enhancement are improved. Firstly, the optimized dual-branch graph convolution multi-scale neural network integrates dynamic graph convolution and multi-scale convolution. The average classification accuracy is higher than that of multi-scale attention temporal convolution network, Gram angle field combined with convolution long short term memory hybrid network, Transformer-based graph convolution network and other existing methods. Secondly, a dual visual feedback mechanism is constructed, in which electroencephalogram (EEG) topographic map feedback can improve the discrimination of spatial patterns, and attention state feedback can enhance the temporal stability of signals. Compared with the single EEG topographic map feedback and non-feedback system, the average classification accuracy of the proposed method is also greatly improved. Finally, in the four classification control task of nursing bed, the average control accuracy of the system is 90.84%, and the information transmission rate is 84.78 bits/min. In summary, this paper provides a reliable technical solution for improving the autonomous interaction ability of patients with severe limb disorders, which has important theoretical significance and application value.
ObjectiveTo investigate the feasibility and effectiveness of motor imagery based brain computer interface with wrist passive movement in chronic stroke patients with wrist extension impairment.MethodsFifteen chronic stroke patients with a mean age of (47.60±14.66) years were recruited from March 2017 to June 2018. At baseline, motor imagery ability was assessed first. Then motor imagery based brain computer interface with wrist passive movement was given as an intervention. Both range of motion of paretic wrist and Barthel index was assessed before and after the intervention.ResultsAmong the 15 chronic stroke patients admitted in the study, 12 finished the whole therapy, and 3 failed to pass the initial assessment. After the therapy, the 12 participants who completed the whole sessions of the treatment and follow up had improved ability of control electroencephalogram, in whom 9 regained the ability to actively extend the affected wrist, and the other 3 failed to actively extend their wrist (the rate of active extending wrist was 75%). The activity of daily life of all the participants did not change significantly before and after intervention, and no discomfort was found after daily treatment.ConclusionIn chronic stroke patients with wrist extension impairment, motor imagery based brain computer interface with wrist passive movement training is feasible and effective.
To accurately capture and address the multi-dimensional feature variations in cross-subject motor imagery electroencephalogram (MI-EEG), this paper proposes a time-frequency transform and Riemannian manifold based domain adaptation network (TFRMDANet) in a high-dimensional brain source space. Source imaging technology was employed to reconstruct neural electrical activity and compute regional cortical dipoles, and the multi-subband time-frequency feature data were constructed via wavelet transform. The two-stage multi-branch time–frequency–spatial feature extractor with squeeze-and-excitation (SE) modules was designed to extract local features and cross-scale global features from each subband, and the channel attention and multi-scale feature fusion were introduced simultaneously for feature enhancement. A Riemannian manifold embedding-based structural feature extractor was used to capture high-order discriminative features, while adversarial training promoted domain-invariant feature learning. Experiments on public BCI Competition IV dataset 2a and High-Gamma dataset showed that TFRMDANet achieved classification accuracies of 77.82% and 90.47%, with Kappa values of 0.704 and 0.826, and F1-scores of 0.780 and 0.905, respectively. The results demonstrate that cortical dipoles provide accurate time–frequency representations of MI features, and the unique multi-branch architecture along with its strong time–frequency–spatial–structural feature extraction capability enables effective domain adaptation enhancement in brain source space.
The bidirectional closed-loop motor imagery brain-computer interface (MI-BCI) is an emerging method for active rehabilitation training of motor dysfunction, extensively tested in both laboratory and clinical settings. However, no standardized method for evaluating its rehabilitation efficacy has been established, and relevant literature remains limited. To facilitate the clinical translation of bidirectional closed-loop MI-BCI, this article first introduced its fundamental principles, reviewed the rehabilitation training cycle and methods for evaluating rehabilitation efficacy, and summarized approaches for evaluating system usability, user satisfaction and usage. Finally, the challenges associated with evaluating the rehabilitation efficacy of bidirectional closed-loop MI-BCI were discussed, aiming to promote its broader adoption and standardization in clinical practice.
Motor imagery electroencephalogram (MI-EEG) decoding algorithms face multiple challenges. These include incomplete feature extraction, susceptibility of attention mechanisms to distraction under low signal-to-noise ratios, and limited capture of long-range temporal dependencies. To address these issues, this paper proposes a multi-branch differential attention temporal network (MDAT-Net). First, the method constructed a multi-branch feature fusion module to extract and fuse diverse spatio-temporal features from different scales. Next, to suppress noise and stabilize attention, a novel multi-head differential attention mechanism was introduced to enhance key signal dynamics by calculating the difference between attention maps. Finally, an adaptive residual separable temporal convolutional network was designed to efficiently capture long-range dependencies within the feature sequence for precise classification. Experimental results showed that the proposed method achieved average classification accuracies of 85.73%, 90.04%, and 96.30% on the public datasets BCI-IV-2a, BCI-IV-2b, and HGD, respectively, significantly outperforming several baseline models. This research provides an effective new solution for developing high-precision motor imagery brain-computer interface systems.
Transcranial alternating current stimulation (tACS) holds significant potential for improving motor function in stroke patients, but its underlying mechanisms remain unclear. In this study, 20 Hz tACS was applied to 15 stroke patients, and their motor imagery (MI) signals were collected before and after stimulation, which were for assessment by combining with the Fugl-Meyer Assessment for Upper Extremity (FMA-UE). Additionally, 11 subjects were recruited as a healthy control group. The study demonstrated that FMA-UE scores of stroke patients significantly increased after tACS intervention. The duration of EEG microstate C and F decreased significantly, while microstate D (coverage, duration, and occurrence probability) increased markedly, and microstate E decreased. The transition probabilities of C→D and D→B were positively correlated with FMA-UE scores. Based on these findings, this study concludes that 20 Hz tACS can enhance neuroplasticity and motor function in patients, and the transition probabilities (C→D/D→B) may serve as potential indicators for assessing motor function, providing experimental evidence for the clinical application of tACS and the development of rehabilitation brain-computer interfaces.