Objective To investigate the gene expression of p38mitogen-activated protein kinase (p38MAPK) and its upstream signaling molecule (mkk3 and mkk6) in fetal skin at different developmental stages and postnatal skin and its potential biological significance. Methods The fetal skin biopsies were obtained from human embryo of spontaneous abortion at gestational ages from 13 to 32 weeks and postnatal skin specimens were collected from patients(4-16 years) undergoing plastic surgery. After the morphological characteristics of skins at different developmental stages were detected with pathological methods, the gene expressions of p38MAPK, mkk3 and mkk6 in skins were examined with reverse transcriptionpolymerase chain reaction analysis (RT-PCR). Results The gene expressions of p38MAPK, mkk3 and mkk6 could all be detected in fetal and postnatal skins. In fetal skins, these 3 genes were bly expressed. Along with fetal growth and development, the gene expressions of p38MAPK and its upstream signaling molecules were faded gradually. In postnatal skin, the mRNA contents of these 3 genes were significantly decreased in comparison with those in fetal skin (Plt;0.01). Conclusion p38 MAPK mediated signal pathways might be involved in the skin developmentat embryonic stage and in the determination of cutaneous structure and function, and also in wound healing at postnatal stage. The relative increment of these gene transcription in younger fetal skin might be one of the reasons why cutaneous cells proliferate rapidly and the wounds heal without scar.
ObjectiveTo investigate the expression and significance of peroxisome proliferator activated receptor γ(PPAR-γ) in human keloid. MethodsTwenty-three keloid samples were harvested from the patients undergoing keloid and auto-skin grafting operation as the experimental group (keloid group), and the residual normal skin after auto-skin grafting operation was collected as the control group. The expression of PPAR-γ protein was examined by immunohistochemistry staining in both keloid and normal skin. Referring to Shimizu immunohistochemical standard, the result was graded; the positive rate of samples and the rate of positive cells were calculated. ResultsImmunohistochemistry staining showed that PPAR-γ protein was expressed in both keloid and normal skin. In keloid, it located in the pricle cell layer, and granular layer of epidermis, and the dermal vessel; the degree of dyeing was very light. However, in normal skin, it located in the base layer of epidermis, dermal vessel walls, sweat glands and sebaceous glands; the dyeing degree was deeper. Immunohistochemical staining score in the keloid group (2.65±0.78) was significantly lower than that in the control group (3.65±1.19) (t=5.030, P=0.000). The positive rate of samples in the keloid group (52.17%, 12/23) was significantly lower than that in the control group (82.61%, 19/23) (χ2=4.847, P=0.028). The rate of positive cells was 46.04%±8.61% in the keloid group, which was significantly lower than that in the control group (59.39%±11.26%) (t=5.974, P=0.000). ConclusionCompared with normal skin, the expression of PPAR-γ protein in keloid is down-regulated in in human keloid, indicating that PPAR-γ may be related to the formation of keloid.
Objective To investigate the activation and role of signal transduction pathway of epidermal growth factor (EGF)-epidermal growth factor receptor (EGFR)-mitogen activated protein kinase (MAPK) in proliferation of human retinal pigment epithelial (RPE) cells. Methods Human RPE cells were stimulated with 0.1%,10% foetal calfserum (FCS) and EGF(0.1, 1, 10, 50 and 100 ng/ml)in 0.1% FCS Dulbeco′s modified Eagle′s medium (DMEM) and in 10% FCS DMEM for 3 days, respectively. Immunohistochemical staining and in situ hybridization were used to observe the expressions of EGFR protein and EGFR mRNA,respectively. Activation of MAPK was detected by immunohistochemical method with specific anti-phosphorylated ERK 1/2 antibody. Results The optimal concentrations of EGF were 10 ng/ml in 0.1% FCS DMEM and 1 ng/ml in 10% FCS DMEM. After 3 days of stimulation with EGF, phosphorylated ERK 1/2 staining was detectable in nucleus of RPE cells, whereas cells presented immunostaining for phosphorylated ERK 1/2 in the cytoplasm before stimulation. Conclusions EGF may improve the expression of EGFR protein and EGFR mRNA of RPE cells, and induced MAPK nuclear translocation in a concentration-dependent manner. EGF-EGFR-MAPK signal transduction pathway may play a key role in RPE cells proliferation, and serum exerts an important acceclerating function in the process. (Chin J Ocul Fundus Dis,2004,20:67-132)
ObjectiveTo investigate the expression changes and the repair effect of mitogen and stress- activated protein kinase 1 (MSK1) on spinal cord injury (SCI) in rats.MethodsOne hundred and twenty male Sprague Dawley (SD) rats (weighing 220-250 g) were used for the study, 70 of them were randomly divided into sham-operation group and SCI group (n=35), the rats in SCI group were given SCI according to Allen’s method, and the sham-operation group only opened the lamina without injuring the spinal cord; spinal cord tissue was collected at 8 hours, 12 hours, 1 day, 2 days, 3 days, 5 days, and 7 days after invasive treatment, each group of 5 rats was used to detect the expression of MSK1 and proliferating cell nuclear antigen (PCNA) by Western blot assay. Another 20 SD rats were grouped by the same method as above (n=10). In these rats, a negative control lentiviral LV3NC dilution was injected at a depth of approximately 0.8 mm at the spinal cord T10 level. The results of transfection at 1, 3, 5, 7, and 14 days after injection were observed under an inverted fluorescence microscope to determine the optimal transfection time of the virus. The other 30 SD rats were randomly divided into group A with only SCI, group B with a negative control lentiviral LV3NC injected after SCI, and group C with MSK1 small interfering RNA (siRNA) lentivirus injected after SCI, with 10 rats each group. The Basso, Beatlie, Bresnahan (BBB) score of hind limbs was measured at 1, 3, 5, 7, and 14 days after treatment; spinal cord tissue collected at the optimal time point for lentivirus transfection was detected the expression changes of MSK1 and PCNA by Western blot and the localization by immunofluorescence staining of MSK1 and PCNA proteins.ResultsWestern blot assay showed that there was no significant changes in the expression of MSK1 and PCNA at each time points in the sham-operation group. In the SCI group, the expression of MSK1 protein was gradually decreased from 8 hours after injury to the lowest level at 3 days after injury, and then gradually increased; the expression change of PCNA protein was opposite to MSK1. The expression of MSK1 in SCI group was significantly lower than that in the sham-operation group at 1, 2, 3, and 5 days after injury (P<0.05), and the expression of PCNA protein of SCI group was significantly higher than that of the sham-operation group at 8 hours and 1, 2, 3, 5, and 7 days after injury (P<0.05). The fluorescence expression of both the SCI group and the sham-operation group has be found and peaked at 7 days. There was a positive correlation between fluorescence intensity and time in 7 days after transfection. With the prolongation of postoperative time, the BBB scores of groups A, B, and C showed a gradually increasing trend. The BBB score of group C was significantly lower than those of groups A and B at 5, 7, and 14 days after treatment (P<0.05). After transfection for 7 days, Western blot results showed that the relative expression of MSK1 protein in group C was significantly lower than that in groups A and B (P<0.05); and the relative expression of PCNA protein was significantly higher than that in groups A and B (P<0.05). Immunofluorescence staining showed that MSK1 was expressed in the nuclei of the spinal cord and colocalized with green fluorescent protein, neuronal nuclei, and glial fibrillary acidic protein (GFAP). The relative expression area of MSK1 positive cells in group C was significantly higher than that in group B (P<0.05), and the relative expression areas of PCNA and GFAP positive cells were significantly lower than those in group B (P<0.05).ConclusionLentivirus-mediated MSK1 siRNA can effectively silence the expression of MSK1 in rat spinal cord tissue. MSK1 may play a critical role in the repair of SCI in rats by regulating the proliferation of glial cells.
ObjectiveTo investigate the expression of extracellular signalregulated kinase (ERK) and p38 mitogenactivated protein kinase (p38 MAPK) in autogenous vein grafts during vascular remodeling.MethodsAn autogenous vein graft model was established by transplanting the right jugular vein to infrarenal abdominal aorta in 80 Wistar rats. Vein graft samples were harvested 6 hours, 24 hours, 3 days, 7 days, 2 weeks, 4 weeks, 6 weeks and 8 weeks after surgery. Gene expression of ERK and p38 MAPK was measured by reverse transcriptionPCR. Western blot was used to detect the expression of protein products and phosphorylation protein products of ERK and p38 MAPK. Apoptosis of vascular smooth muscle cells (VSMCs) was determined by TUNEL. Proliferating cell nuclear antigen(PCNA) of VSMCs also was studied.ResultsThe expression of ERK1 mRNA and p38 MAPK mRNA increased considerably after surgery. ERK1 mRNA reached the peak on the 7th day 〔(33.2±14.2)%, P<0.01〕, but p38 MAPK mRNA reached the peak on the second week after surgery 〔(58.8±26.2)%, P<0.01〕. The expression of ERK1/2 detected by western blot reached the peak during 1 to 2 weeks and decreased gradually to normal level 6 weeks after surgery. The expression of p38 MAPK reached the peak during 2 to 4 weeks and decreased to 1/4 to 1/2fold 8 weeks after surgery. There was a positive relationship between ERK1 and PCNA(r=0.759 6,P<0.01) and a positive relationship between p38 MAPK and apoptosis(r=0.892 2,P<0.01). ConclusionActivation of MAPK system exists in autogenous vein grafts and it may become a new target for the therapy of stenosis after vein grafts.
Objective To explore the regulation of peroxisome proliferator-activated receptor γ coactivator 1α( PGC-1α) and NF-E2-related factor 2( Nrf2) on expression of γ-glutamylcysteine synthetase ( γ-GCS) , and their roles in chronic obstructive pulmonary disease( COPD) . Methods Twenty-four SD rats were randomly divided into a COPD group and a normal control group. COPD model was established by intratracheal instillation of lipopolysaccharide ( LPS) and daily exposure to cigarette smog in the COPD group. The lung function was measured and the pathological changes were observed. The protein and mRNA expressions of PGC-1α, Nrf2, and γ-GCS in lung tissue were measured by immunohistochemistry, Western blot, in site hybridization ( ISH) , and reverse transcription-polymerase chain reaction ( RT-PCR ) ,respectively. Results In the COPD group, the pulmonary function ( FEV0. 3, FEV0. 3 /FVC, PEF) damage and lung pathological changes were conformed as morphological characteristics of COPD. The mRNA of PGC-1α and Nrf2 expressed in lung tissues of two group rats in the region consistent with γ-GCS mRNA. The protein and mRNA expressions of PGC-1αand γ-GCS were markedly increased in the COPD group( all P lt;0. 05) ,and the protein expression of Nrf2 was obviously up-regulated ( P lt; 0. 01) , while Nrf2 mRNA had no significant difference between the two groups( P gt;0. 05 ) . Linear correlation analysis showed that the level ofPGC-1αprotein was positively correlated with the levels of Nrf2 protein and mRNA ( r = 0. 775, 0. 515, all P lt; 0. 01) , and the levels of PGC-1αand Nrf2 protein were positively correlated with the levels of γ-GCS protein ( r = 0. 531, 0. 575, all P lt; 0. 01) and mRNA ( r = 0. 616, 0. 634, all P lt; 0. 01) . Conclusions PGC-1α, which may serve as a co-activator of Nrf2, can up-regulate the expression of γ-GCS gene cooperatively with Nrf2 through a common pathway, which might involve in the oxidative and antioxidative mechanism in the pathogenesis of COPD.
Epilepsy is a disorder of the brain in which sudden abnormal discharges of neurons cause transient dysfunction and is a common disorder of the nervous system. Although most patients experience remission of symptoms with medication, about 20 ~ 30% of patients still have poor outcomes with medication and progress to refractory epilepsy. The etiology of epilepsy is complex and the exact pathogenesis is not yet clear. Current research has explored the pathophysiological mechanisms underlying epileptogenesis, thus providing a basis for identifying potential therapeutic targets for epilepsy and advancing the precision treatment of epilepsy. p38 Mitogen-activated protein kinase (MAPK) signalling pathway is a conserved class of kinases involved in many physiological/pathological processes by regulating intracellular gene expression levels, cell division, differentiation and apoptosis in response to various extracellular stimuli in order to mediate intracellular signalling cascades. The p38 MAPK signalling pathway is one of the subfamilies of MAPK that mediates inflammatory responses, apoptosis, tissue edema and other biological processes involved in the development of central nervous system diseases. The p38 MAPK signalling pathway is now reviewed for its involvement in the development of epilepsy through unused pathways, in order to identify new potential targets for epilepsy treatment and provide clinical precision.
Objective To investigate the effect of adiponectin on proliferation of airway smooth muscle cells( ASMCs) , and explore its possible mechanism. Methods ASMCs were derived fromrat airway tissue and were cultured in vitro. RT-PCR was used to verify the expression of adiponectin receptors on ASMCs. Then ASMCs were treated with adiponectin at different concentrations( 5, 10, 20, 40, 80 μg/mL) for different periods of time( 1, 12, 24, 48, 72 hours) , respectively. The absorbsence ratios of adiponectin at different concentrations were determined by MTT assay. The adenosine monophosphate-activated protein kinase( AMPK) and phosphorylated AMPK( pho-AMPK) in ASMCs were quantified by Western blot after being treated with adiponectin at different concentrations ( 5, 10, 20, 40 μg/mL) for 48 hours. ResultsThe inhibition of adiponectin on ASMCs was showed in dose-dependent manner( r = 0. 324, P lt; 0. 01) and time-dependent manner( r = 0. 607, P lt; 0. 05) . Western blot indicated that the expression of pho-AMPK increased with the increased concentrations of adiponectin( r =0. 607, P lt; 0. 01) . The ratio of pho-AMPK/AMPK were ( 27. 66 ±1. 03) % , ( 31. 91 ±0. 86 ) %, ( 75. 52 ±2. 67) % , and ( 84. 50 ±1. 05) % ,respectively, with significant differences between each concentrations of adiponectin( P lt; 0. 05) . There was no expression of pho-AMPK in the control group. Conclusion Adiponectin can significantly inhibit ASMCs’proliferation by activating AMPK.
ObjectiveTo summarize the current advancement of peroxisome proliferator activated receptors (PPARs) participating in formation of abdominal aortic aneurysm (AAA) and to find out the potential treatment strategy of AAA. MethodsRelevant literatures about PPARs and formation of AAA were reviewed. ResultsAAA involved inflammation of all the layers of aorta, and the formation of AAA needed many kinds of inflammatory cells and cytokines. Many researches in vitro or in vivo had shown that PPARs could reduce the expression of inflammatory cytokines, to reduce formation of AAA. However, PPARγ was also confirmed to participate in the formation of AAA and the mechanism might be the transformation of macrophage from type 1 macrophage (M1) to type 2 macrophage (M2). According to the existing studies, the assumption could be that PPARγ can suppress the inflammatory function of M1 to reduce formation of AAA at the initiating stage, and promote formation of AAA by inducing the transform of macrophage to M2 at the late stage. ConclusionPPARs may be a potential targeting point for the prevention of AAA. More studies are needed to show the feasibility and to decide the application timing.
【Abstract】 Objective To investigate the expression of connexin 40 (Cx40) and hyperpolarization-activated cycl icnucleotide-gated cation channel 4 (HCN4) in rat bone marrow mesenchymal stem cells (BMSCs) cocultured with the sinoatrialnode (SAN) tissues in vitro, so as to evaluate the possibil ity of BMSCs differentiation into SAN cells. Methods BMSCs wereisolated from Sprague Dawley rats (aged 4-6 weeks, male or female) by the adhesive method and cultured; BMSCs at the 3rdpassage were marked with carboxyfluorescein succinimidyl ester, and then were incubated on 6-well culture plate; cell climingsl ices were prepared at the same time. SAN tissue was taken and cut into 0.3 cm × 0.3 cm mass, and then placed into 4℃ PBSsolution. The SAN tissue mass was cocultured with marked BMSCs at the 3rd passage for 3 weeks as the experimental group, andBMSCs at 3rd passage were cultured alone for 1 week as the control group. At 1, 2, and 3 weeks after coculture, the mean integratedabsorbance (MIA) values of Cx40 and HCN4 were measured by Image pro plus 5.0 through the method of immunohistochemistry,and the mRNA expressions of Cx40 and HCN4 were identified by real-time fluorescent quantitative PCR. Results TheMIA values of Cx40 and HCN4 in the experimental group were higher than that in the control group, showing significantdifferences (P lt; 0.01). In the experimental group, the expressions of Cx40 and HCN4 increased gradually with time. The longerthe culture time was, the higher the expressions of Cx40 and HCN4 were, showing significant differences (P lt; 0.05). The mRNAexpressions of Cx40 and HCN4 in the experimental group were significantly higher than those in the control group (P lt; 0.01); inthe experimental group, the mRNA expressions of Cx40 and HCN4 increased gradually with time, showing significant differencesbetween different time points (P lt; 0.05). Conclusion The expressions of Cx40 and HCN4 increase obviously after coculturingBMSCs with SAN tissue, indicating that BMSCs could differentiate into SAN cells by coculturing with SAN tissue in vitro.