west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "biocompatibility" 22 results
  • Application and development of shape memory polymers in endovascular therapy

    As one of the stimulus-response polymeric intelligent materials, shape memory polymers have been widely applied in biomedicine due to their better biocompatibility, higher controllability, stronger deformation restorability and biodegradability compared with shape memory alloys and shape memory ceramics. This review will introduce the structural principles of shape memory polymers and summarize their applications in the treatment of vascular diseases, especially in endovascular therapy. At the same time, the related technical problems and the future of shape memory polymers are prospected. With the continuous development of processing technology and materials, it can be predicted that shape memory polymers will be more widely used in the medical field.

    Release date:2020-12-07 01:26 Export PDF Favorites Scan
  • In Situ Polymerization and Characterization of Hydroxyapatite/polyurethane Implanted Material

    In order to improve the interfacial bonding strength of hydroxyapatite/polyurethane implanted material and dispersion of hydroxyapatite in the polyurethane matrix, we in the present study synthesized nano-hydroxyapatite/polyurethane composites by in situ polymerization. We then characterized and analyzed the fracture morphology, thermal stability, glass transition temperature and mechanical properties. We seeded MG63 cells on composites to evaluate the cytocompatibility of the composites. In situ polymerization could improve the interfacial bonding strength, ameliorate dispersion of hydroxyapatite in the properties of the composites. After adding 20 wt% hydroxyapatite into the polyurethane, the thermal stability was improved and the glass transition temperatures were increased. The tensile strength and maximum elongation were 6.83 MPa and 861.17%, respectively. Compared with those of pure polyurethane the tensile strength and maximum elongation increased by 236.45% and 143.30%, respectively. The composites were helpful for cell adhesion and proliferation in cultivation.

    Release date: Export PDF Favorites Scan
  • Preparation of Elastic Porous Cell Scaffold Fabricated with Combined Polydimethylsiloxane (PDMS) and Hydroxyapatite (HA)

    Polydimethylsiloxane (PDMS) and hydroxyapatite (HA) were combined in our laboratory to fabricate an elastic porous cell scaffold with pore-forming agent, and then the scaffold was used as culture media for rat bone marrow derived mesenchymal stem cells (rBMSCs). Different porous materials (square and circular in shape) were prepared by different pore-forming agents (NaCl or paraffin spheres) with adjustable porosity (62%-76%). The HA crystals grew on the wall of hole when the material was exposed to SBF solutions, showing its biocompatibility and ability to support the cells to attach on the materials.

    Release date: Export PDF Favorites Scan
  • Progress in application of medical absorbable haemostatic materials for haemostasis in orthopaedic surgery

    ObjectiveThe application progress of medical absorbable haemostatic material (MAHM) in hemostasis during orthoapedic surgery was reviewed, in order to provide reference for clinical hemostasis program. Methods The domestic and foreign literature on the application of MAHM for hemostasis in orthopedic surgery was extensively reviewed and summarized. ResultsAccording to biocompatibility, MAHM can be divided into oxidized cellulose/oxidized regenerated cellulose materials, chitosan and its derivatives materials, starch materials, collagen and gelatin materials, and fibrin glue materials, etc., which can effectively reduce blood loss when used in orthopedic surgery for hemostasis. Each hemostatic material has different coagulation mechanism and suitable population. Oxidized cellulose/oxidized regenerated cellulose, chitosan and its derivatives, starch hemostatic material mainly stops bleeding by stimulating blood vessel contraction and gathering blood cells, which is suitable for people with abnormal coagulation function. Collagen, gelatin and fibrin glue hemostatic materials mainly affect the physiological coagulation mechanism of the human body to stop bleeding, suitable for people with normal coagulation function. ConclusionReasonable selection of MAHM can effectively reduce perioperative blood loss and reduce the risk of postoperative complications, but at present, single hemostatic material can not meet clinical needs, and a new composite hemostatic material with higher hemostatic efficiency needs to be developed.

    Release date:2024-12-13 10:50 Export PDF Favorites Scan
  • Study on biocompatibility of carbon-based composites

    Silicon carbide (SiC) film and silicon dioxide (SiO2) film were deposited on the surface of carbon/carbon composite (C/C) by low pressure chemical vapor deposition (LPCVD). The biocompatibility of the three carbon-based composites, e. g. C/C, C/C-SiC, C/C-SiO2 were investigated by cytotoxicity test, cell direct contact and cell adhesion experiments. Cytotoxicity, cell direct contact and cell adhesion showed that the three materials had no toxic effect on mouse fibroblasts (L929 cells). However, the particles dropped off from the three materials had a great impact on evaluation accuracy of the thiazolyl blue (MTT) test. More the particles were lost, more growth inhibition to L929 cells. The evaluation accuracy of MTT method can be kept with the filtered extract of materials. Furthermore, the results of surface particles shedding experiment showed that the amount of surface particles shed from C/C-SiO2 was the most, followed by C/C and C/C-SiC in 72 hours. Particles shedding curves showed there was a peak reached at eighth hour and then declined to the thirty-sixth hour. The filtrate analysis showed that there was no ion exchange between the three materials and simulated body fluid (SBF) solution. The results of this study on biocompatibility of carbon-based composites have certain guiding significance for their future application in clinical filed.

    Release date:2018-10-19 03:21 Export PDF Favorites Scan
  • Biocompatibility research of true bone ceramics

    Objective To investigate the biocompatibility of true bone ceramic (TBC) and provide experimental basis for clinic application. Methods TBC was prepared from healthy adult bovine cancellous bone by deproteinization and high temperature calcinations. Mouse fibroblast cell line (L929 cells) were cultured with the leaching liquor of TBC in vitro, and the cytotoxicity was evaluated at 2nd, 4th, and 7th days. L929 cells were inoculated into the TBC and cultured for 4 days. The cell adhesion and proliferation on the surface of the TBC were observed by scanning electron microscopy, and evaluated the cell compatibility of TBC. Ten New Zealand white rabbits were divided into 2 groups, and drilled holes at the tibia of both hind limbs. TBC and hydroxyapatite (HA) were implanted into the left side (experimental group) and the right side (control group), respectively. And the biocompatibility of TBC was evaluated by general observation and histological observation at 4 and 26 weeks after implantation. Results Cytotoxicity test showed that the cytotoxicity level of leaching liquor of TBC was grade 0-1. Cell compatibility experiments showed that the L929 cells adhered well on the surface of TBC and migrated into the pores. The implantation test in vivo showed that experimental group and control group both had mild or moderate inflammatory response at 4 weeks, and new bone formation occurred. At 26 weeks, there was no inflammatory reaction observed in both groups, and new bone formation was observed in varying degrees. Conclusion TBC have good biocompatibility and can be used to repair bone defect in clinic.

    Release date:2017-10-10 03:58 Export PDF Favorites Scan
  • Experimental study on long-term outcome of porcine collagen membrane xenotransplantation in vivo

    ObjectiveTo observe the long-term outcome and biocompatibility of the porcine collagen membrane (DermalGen) after xenotransplantation in vivo.MethodsTwenty Sprague Dawley rats were randomly divided into 2 groups (n=10). DermalGen were implanted subcutaneously into the dorsum of rats in experimental group, and the rats in control group were treated with sham-operation. At 3, 7, and 15 days and 1, 3, 6, and 12 months after operation, the samples of experimental group were harvested and gross observation, histological observation, CD31 immunohistochemical staining, and transmission electron microscope observation were taken to observe the inflammatory reaction, angiogenesis, and collagen arrangement. The skin tissues of the control group at 12 months were observed and compared.ResultsAll incisions healed in experimental group, without obvious swelling and inflammatory reaction. The DermalGen was closely contact with the surrounding tissue without obvious rejection, and it was still legible at 12 months. Histological observation of experimental group showed that the infiltration of fibroblasts and inflammatory cells were seen at 7 days. More capillaries and fibroblast cells were seen and the inflammatory response gradually faded at 15 days and 1 month. There were abundant vessels and cells in the DermalGen at 3 months. The angiogenesis and fibroblasts decreased gradually, and the collagen started to format and margin blended simultaneously at 6 and 12 months. The inflammatory cells in experimental group at 15 days and 1 month were significantly more than that in control group (P<0.05), and no significant difference was found at 12 months between experimental group and control group (P>0.05). Immunohistochemical staining of experimental group showed that the angiogenesis changed obviously with the time, and the density of vessels decreased significantly at 12 months. Compared with control group, the possitive expressions of CD31 in experimental group at 15 days and 12 months after operation were significantly decreased (P<0.05), and were significantly increased at 1 month (P<0.05). Transmision electron microscope observation showed that the arrangement of collagen in grafted DermalGen had no obvious changed when compared with the DermalGen, and vascular endothelial cell, capillarypericytes and fibroblast cells could be seen inside.ConclusionThe DermalGen structure is stable after long-term xenotransplantation and with good tolerogenic property in vivo.

    Release date:2018-04-03 09:11 Export PDF Favorites Scan
  • Preparation and in vitro evaluation of tissue engineered osteochondral integration of multi-layered scaffold

    ObjectiveThe tissue engineered osteochondral integration of multi-layered scaffold was prepared and the related mechanical properties and biological properties were evaluated to provide a new technique and method for the repair and regeneration of osteochondral defect.MethodsAccording to blend of different components and proportion of acellular cartilage extracellular matrix of pig, nano-hydroxyapatite, and alginate, the osteochondral integration of multi-layered scaffold was prepared by using freeze-drying and physical and chemical cross-linking technology. The cartilage layer was consisted of acellular cartilage extracellular matrix; the middle layer was consisted of acellular cartilage extracellular matrix and alginate; and the bone layer was consisted of nano-hydroxyapatite, alginate, and acellular cartilage extracellular matrix. The biological and mechanics characteristic of the osteochondral integration of multi-layered scaffold were evaluated by morphology observation, scanning electron microscope observation, Micro-CT observation, porosity and pore size determination, water absorption capacity determination, mechanical testing (compression modulus and layer adhesive strength), biocompatibility testing [L929 cell proliferation on scaffold assessed by MTT assay, and growth of green fluorescent protein (GFP)-labeled Sprague Dawley rats’ bone marrow mesenchumal stem cells (BMSCs) on scaffolds].ResultsGross observation and Micro-CT observation showed that the scaffolds were closely integrated with each other without obvious discontinuities and separation. Scanning electron microscope showed that the structure of the bone layer was relatively dense, while the structure of the middle layer and the cartilage layer was relatively loose. The pore structures in the layers were connected to each other and all had the multi-dimensional characteristics. The porosity of cartilage layer, middle layer, and bone layer of the scaffolds were 93.55%±2.90%, 93.55%±4.10%, and 50.28%±3.20%, respectively; the porosity of the bone layer was significantly lower than that of cartilage layer and middle layer (P<0.05), but no significant difference was found between cartilage layer and middle layer (P>0.05). The pore size of the three layers were (239.66±35.28), (153.24±19.78), and (82.72±16.94) μm, respectively, showing significant differences between layers (P<0.05). The hydrophilic of the three layers were (15.14±3.15), (13.65±2.98), and (5.32±1.87) mL/g, respectively; the hydrophilic of the bone layer was significantly lower than that of cartilage layer and middle layer (P<0.05), but no significant difference was found between cartilage layer and middle layer (P>0.05). The compression modulus of the three layers were (51.36±13.25), (47.93±12.74), and (155.18±19.62) kPa, respectively; and compression modulus of the bone layer was significantly higher than that of cartilage layer and middle layer (P<0.05), but no significant difference was found between cartilage layer and middle layer (P>0.05). The osteochondral integration of multi-layered scaffold was tightly bonded with each layer. The layer adhesive strength between the cartilage layer and the middle layer was (18.21±5.16) kPa, and the layer adhesive strength between the middle layer and the bone layer was (16.73±6.38) kPa, showing no significant difference (t=0.637, P=0.537). MTT assay showed that L929 cells grew well on the scaffolds, indicating no scaffold cytotoxicity. GFP-labeled rat BMSCs grew evenly on the scaffolds, indicating scaffold has excellent biocompatibility.ConclusionThe advantages of three layers which have different performance of the tissue engineered osteochondral integration of multi-layered scaffold is achieved double biomimetics of structure and composition, lays a foundation for further research of animal in vivo experiment, meanwhile, as an advanced and potential strategy for osteochondral defect repair.

    Release date:2018-04-03 09:11 Export PDF Favorites Scan
  • Research progress on the biological properties of the surface nanocrystals of typical medical metal materials

    Biomedical metal materials have always been a major biomedical material with a large and wide range of clinical use due to their excellent properties such as high strength and toughness, fatigue resistance, easy forming, and corrosion resistance. They are also the preferred implant material for hard tissues (bones and teeth that need to withstand higher loads) and interventional stents. And nano-medical metal materials have better corrosion resistance and biocompatibility. This article focuses on the changes and improvements in the properties of several typical medical metal materials surfaces after nanocrystallization, and discusses the current problems and development prospects of nano-medical metal materials.

    Release date:2021-03-26 07:36 Export PDF Favorites Scan
  • Effect of human tooth bone graft materials on proliferation and differentiation of mice mononuclear macrophage RAW264.7

    Objective To investigate the effect of human tooth bone graft materials on the proliferation, differentiation, and morphology of macrophages, and to understand the biocompatibility and cytotoxicity of human tooth bone graft materials. Methods Fresh human teeth were collected to prepare human tooth bone graft materials, the adhesion of mouse mononuclear macrophages RAW264.7 to human bone graft materials was observed under confocal microscopy. Scanning electron microscopy was used to observe the morphology of human tooth bone graft materials, OSTEONⅡ synthetic highly resorbable bone grafting materials, and untreated tooth powder (dental particles without preparation reagents). Different components of the extract were prepared in 4 groups: group A (DMEM medium containing 10% fetal bovine serum), group B (human tooth bone graft materials), group C (OSTEONⅡ synthetic highly resorbable bone grafting materials), group D (untreated tooth powder without preparation reagents). The 4 groups of extracts were co-cultured with the cells, and the cytotoxicity was qualitatively determined by observing the cell morphological changes by inverted microscope. The cell proliferation and differentiation results and cell relative proliferation rate were determined by MTT method to quantitatively determine cytotoxicity. The cell viability was detected by trypanosoma blue staining, and tumor necrosis factor α (TNF-α ) and interleukin 6 (IL-6) expressions were detected by ELISA. Results Scanning electron microscopy showed that the surface of the human tooth bone graft material and the OSTEONⅡ synthetic highly resorbable bone grafting materials had a uniform pore structure, while the untreated tooth particle collagen fiber structure and the demineralized dentin layer collapsed without specific structure. Confocal microscopy showed that the cells grew well on human tooth bone graft materials. After co-culture with the extract, the morphology and quantity of cells in groups A, B, and C were normal, and the toxic reaction grades were all grade 0, while group D was grade 3 reaction. MTT test showed that the cytotoxicity of groups B and C was grade 0 or 1 at each time point, indicating that the materials were qualified. The cytotoxicity was grade 2 in group D at 1 day after culture, and was grade 4 at 3, 5, and 7 days. Combined with cell morphology analysis, the materials were unqualified. The trypanosoma blue staining showed that the number of cells in groups A, B, and C was significantly higher than that in group D at each time point (P<0.05), but no significant difference was found among groups A, B, and C (P<0.05). ELISA test showed that the levels of TNF-α and IL-6 in groups A, B, and C were significantly lower than those in group D (P<0.05), but no significant difference was found among groups A, B, and C (P<0.05). Conclusion The human tooth bone graft materials is co-cultured with mice mononuclear macrophages without cytotoxicity. The extract has no significant effect on cell proliferation and differentiation, does not increase the expression of inflammatory factors, has good biocompatibility, and is expected to be used for clinical bone defect repair.

    Release date:2018-10-09 10:34 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content