ObjectiveThe application progress of medical absorbable haemostatic material (MAHM) in hemostasis during orthoapedic surgery was reviewed, in order to provide reference for clinical hemostasis program. Methods The domestic and foreign literature on the application of MAHM for hemostasis in orthopedic surgery was extensively reviewed and summarized. ResultsAccording to biocompatibility, MAHM can be divided into oxidized cellulose/oxidized regenerated cellulose materials, chitosan and its derivatives materials, starch materials, collagen and gelatin materials, and fibrin glue materials, etc., which can effectively reduce blood loss when used in orthopedic surgery for hemostasis. Each hemostatic material has different coagulation mechanism and suitable population. Oxidized cellulose/oxidized regenerated cellulose, chitosan and its derivatives, starch hemostatic material mainly stops bleeding by stimulating blood vessel contraction and gathering blood cells, which is suitable for people with abnormal coagulation function. Collagen, gelatin and fibrin glue hemostatic materials mainly affect the physiological coagulation mechanism of the human body to stop bleeding, suitable for people with normal coagulation function. ConclusionReasonable selection of MAHM can effectively reduce perioperative blood loss and reduce the risk of postoperative complications, but at present, single hemostatic material can not meet clinical needs, and a new composite hemostatic material with higher hemostatic efficiency needs to be developed.
Biomedical metal materials have always been a major biomedical material with a large and wide range of clinical use due to their excellent properties such as high strength and toughness, fatigue resistance, easy forming, and corrosion resistance. They are also the preferred implant material for hard tissues (bones and teeth that need to withstand higher loads) and interventional stents. And nano-medical metal materials have better corrosion resistance and biocompatibility. This article focuses on the changes and improvements in the properties of several typical medical metal materials surfaces after nanocrystallization, and discusses the current problems and development prospects of nano-medical metal materials.
Silicon carbide (SiC) film and silicon dioxide (SiO2) film were deposited on the surface of carbon/carbon composite (C/C) by low pressure chemical vapor deposition (LPCVD). The biocompatibility of the three carbon-based composites, e. g. C/C, C/C-SiC, C/C-SiO2 were investigated by cytotoxicity test, cell direct contact and cell adhesion experiments. Cytotoxicity, cell direct contact and cell adhesion showed that the three materials had no toxic effect on mouse fibroblasts (L929 cells). However, the particles dropped off from the three materials had a great impact on evaluation accuracy of the thiazolyl blue (MTT) test. More the particles were lost, more growth inhibition to L929 cells. The evaluation accuracy of MTT method can be kept with the filtered extract of materials. Furthermore, the results of surface particles shedding experiment showed that the amount of surface particles shed from C/C-SiO2 was the most, followed by C/C and C/C-SiC in 72 hours. Particles shedding curves showed there was a peak reached at eighth hour and then declined to the thirty-sixth hour. The filtrate analysis showed that there was no ion exchange between the three materials and simulated body fluid (SBF) solution. The results of this study on biocompatibility of carbon-based composites have certain guiding significance for their future application in clinical filed.
Objective To prepare nano polypyrrole (PPy)/chitin composite membrane and observe their biocompatibility. Methods The nano PPy was synthesized by microemulsion polymerization, blended with chitosan and then formed membranes. The membranes were then modified by acetylation to get the experimental membranes (nano PPy/chitin composite membranes, group A). The chitosan membranes (group B) and chitin ones (group C) modified by acetylation acted as control. Scanning electron microscopy and FT-IR spectra were used to identify the nano PPy and the membranes of each group. And the conductivity of membranes of each group was measured. Schwann cells were co-cultured in vitro with each group membranes to observe the biocompatibility by inverted microscope observing, living cell staining, cell counting, and immunofluorescence staining. The lysozyme solution was used to evaluate the degradation of the membranes in vitro. Results The FT-IR spectra showed that the characteristic vibrational absorption peaks of C=C from nano PPy appeared at 1 543.4 cm–1 and 1 458.4 cm–1. Scanning electron microscopy observation revealed that the size of nano PPy particles was about 100-200 nm. The nano PPy particles were synthesized. It was successful to turn chitosan to chitin by the acetylation, which was investigated by FT-IR analysis of membranes in groups A and C. The characteristic peaks of the amide Ⅱ band around 1 562 cm–1 appeared after acetylated modification. Conductivity test showed that the conductivity of membranes in group A was about (1.259 2±0.005 7)×10–3 S/cm, while the conductivity of the membranes in groups B and C was not detected. The nano PPy particles uniformly distributed on the surface of membranes in group A were observed by scanning electron microscope; the membranes in control groups were smooth. As a result, the nano PPy/chitin composite membranes with electrical conductivity were obtained. The cultured Schwann cells were found to survive with good function by fluorescein diacetate live cell staining, soluble protein-100 immunofluorescence staining, and inverted microscope observing. The cell counting showed that the proliferation of Schwann cells after 2 days and 4 days of group A was more than that of the two control groups, and the differences were significant (P<0.05). It indicated that the nano PPy/chitin composite membranes had better ability of adhesion and proliferation than those of chitosan and chitin membranes. The degradation of membranesin vitro showed that the degradation rates of membranes in groups A and C were significantly higher than those in group B at all time points (P<0.05). In a word, the degradation performance of the membranes modified by acetylation was better than that of chitosan membranes under the same condition. Conclusion The nano PPy and chitosan can be blended and modified by acetylation successfully. Nano PPy/chitin composite membranes had electrical conductivity, degradability, and good biocompatibility in vitro.
ObjectiveTo evaluate the effect of a novel micro-arc oxidation (MAO) coated magnesium-zinc-calcium (Mg-Zn-Ca) alloy scaffold/autologous bone particles to repair critical size bone defect (CSD) in rabbit and explore the novel scaffold in vivo corrosion resistance and biocompatibility.MethodsSeventy-two New Zealand white rabbits were randomly divided into 3 groups (n=24), group A was uncoated Mg-Zn-Ca alloy scaffold group, group B was 10 μm MAO coated Mg-Zn-Ca alloy scaffold group, and group C was control group with only autologous bone graft. The animals were operated to obtain bilateral ulnar CSD (15 mm in length) models. The bone fragment was removed and minced into small particles and were filled into the scaffolds of groups A and B. Then, the scaffolds or autologous bone particles were replanted into the defects. The animals were sacrificed at 2, 4, 8, and 12 weeks after surgery (6 rabbits each group). The local subcutaneous pneumatosis was observed and recorded. The ulna defect healing was evaluated by X-ray image and Van Gieson staining. The X-ray images were assessed and scored by Lane-Sandhu criteria. The percentage of the lost volume of the scaffold (ΔV) and corrosion rate (CR) were calculated by the Micro-CT. The Mg2+ and Ca2+ concentrations were monitored during experiment and the rabbit liver, brain, kidney, and spleen were obtained to process HE staining at 12 weeks after surgery.ResultsThe local subcutaneous pneumatosis in group B was less than that in group A at 2, 4, and 8 weeks after surgery, showing significant differences between 2 groups at 2 and 4 weeks after surgery (P<0.05); and the local subcutaneous pneumatosis was significantly higher in group B than that in group A at 12 weeks after surgery (P<0.05). The X-ray result showed that the score of group C was significantly higher than those of groups A and B at 4 and 8 weeks after surgery (P<0.05), and the score of group B was significantly higher than that of group A at 8 weeks (P<0.05). At 12 weeks after surgery, the scores of groups B and C were significantly higher than that of group A (P<0.05). Meanwhile, the renew bone moulding of group B was better than that in group A at 12 weeks after surgery. Micro-CT showed that ΔV and CR in group B were significantly lower than those in group A (P<0.05). Van Gieson staining showed that group B had better biocompatibility and osteanagenesis than group A. The Mg2+ and Ca2+ concentrations in serum showed no significant difference between groups during experiments (P>0.05). And there was no obvious pathological changes in the liver, brain, kidney, and spleen of the 3 groups with HE staining at 12 weeks.ConclusionThe MAO coated Mg-Zn-Ca alloy scaffold/autologous bone particles could be used to repair CSD effectively. At the same time, 10 μm MAO coating can effectively improve the osteanagenesis, corrosion resistance, and biocompatibility of Mg-Zn-Ca alloy scaffold.
In view of the excellent biocompatibility as well as the low cost, nanoscale ZnO shows great potential for drug delivery application. Moreover, The charming character enable nanoscale ZnO some excellent features (e.g. dissolution in acid, ultrasonic permeability, microwave absorbing, hydrophobic/hydrophilic transition). All of that make nanoscale ZnO reasonable choices for smart drug delivery. In the recent decade, more and more studies have focused on controlling the drug release behavior via smart drug delivery systems based on nanoscale ZnO responsive to some certain stimuli. Herein, we review the recent exciting progress on the pH-responsive, ultrasound-responsive, microwave-responsive and UV-responsive nanoscale ZnO-based drug delivery systems. A brief introduction of the drug controlled release behavior and its effect of the drug delivery systems is presented. The biocompatibility of nanoscale ZnO is also discussed. Moreover, its development prospect is looked forward.
Three-dimensional (3D) bio-printing is a novel engineering technique by which the cells and support materials can be manufactured to a complex 3D structure. Compared with other 3D printing methods, 3D bio-printing should pay more attention to the biocompatible environment of the printing methods and the materials. Aimed at studying the feature of the 3D bio-printing, this paper mainly focuses on the current research state of 3D bio-printing, with the techniques and materials of the bio-printing especially emphasized. To introduce current printing methods, the inkjet method, extrusion method, stereolithography skill and laser-assisted technique are described. The printing precision, process, requirements and influence of all the techniques on cell status are compared. For introduction of the printing materials, the cross-link, biocompatibility and applications of common bio-printing materials are reviewed and compared. Most of the 3D bio-printing studies are being remained at the experimental stage up to now, so the review of 3D bio-printing could improve this technique for practical use, and it could also contribute to the further development of 3D bio-printing.
Objective To investigate the effect of human tooth bone graft materials on the proliferation, differentiation, and morphology of macrophages, and to understand the biocompatibility and cytotoxicity of human tooth bone graft materials. Methods Fresh human teeth were collected to prepare human tooth bone graft materials, the adhesion of mouse mononuclear macrophages RAW264.7 to human bone graft materials was observed under confocal microscopy. Scanning electron microscopy was used to observe the morphology of human tooth bone graft materials, OSTEONⅡ synthetic highly resorbable bone grafting materials, and untreated tooth powder (dental particles without preparation reagents). Different components of the extract were prepared in 4 groups: group A (DMEM medium containing 10% fetal bovine serum), group B (human tooth bone graft materials), group C (OSTEONⅡ synthetic highly resorbable bone grafting materials), group D (untreated tooth powder without preparation reagents). The 4 groups of extracts were co-cultured with the cells, and the cytotoxicity was qualitatively determined by observing the cell morphological changes by inverted microscope. The cell proliferation and differentiation results and cell relative proliferation rate were determined by MTT method to quantitatively determine cytotoxicity. The cell viability was detected by trypanosoma blue staining, and tumor necrosis factor α (TNF-α ) and interleukin 6 (IL-6) expressions were detected by ELISA. Results Scanning electron microscopy showed that the surface of the human tooth bone graft material and the OSTEONⅡ synthetic highly resorbable bone grafting materials had a uniform pore structure, while the untreated tooth particle collagen fiber structure and the demineralized dentin layer collapsed without specific structure. Confocal microscopy showed that the cells grew well on human tooth bone graft materials. After co-culture with the extract, the morphology and quantity of cells in groups A, B, and C were normal, and the toxic reaction grades were all grade 0, while group D was grade 3 reaction. MTT test showed that the cytotoxicity of groups B and C was grade 0 or 1 at each time point, indicating that the materials were qualified. The cytotoxicity was grade 2 in group D at 1 day after culture, and was grade 4 at 3, 5, and 7 days. Combined with cell morphology analysis, the materials were unqualified. The trypanosoma blue staining showed that the number of cells in groups A, B, and C was significantly higher than that in group D at each time point (P<0.05), but no significant difference was found among groups A, B, and C (P<0.05). ELISA test showed that the levels of TNF-α and IL-6 in groups A, B, and C were significantly lower than those in group D (P<0.05), but no significant difference was found among groups A, B, and C (P<0.05). Conclusion The human tooth bone graft materials is co-cultured with mice mononuclear macrophages without cytotoxicity. The extract has no significant effect on cell proliferation and differentiation, does not increase the expression of inflammatory factors, has good biocompatibility, and is expected to be used for clinical bone defect repair.
Objective To explore the clinical application value of mineralized collagen (MC) bone scaffolds in repairing various types of skull defects, and to assess the suitability and repair effectiveness of porous MC (pMC) scaffolds, compact MC (cMC) scaffolds, and biphasic MC composite (bMC) scaffolds. Methods A retrospective analysis was conducted on the clinical data of 105 patients who underwent skull defect repair with pMC, cMC, or bMC between October 2014 and April 2022. The cohort included 63 males and 42 females, ranging in age from 3 months to 55 years, with a median age of 22.7 years. Causes of defects included craniectomy after traumatic surgery in 37 cases, craniotomy in 58 cases, tumor recurrence or intracranial hemorrhage surgery in 10 cases. Appropriate MC scaffolds were selected based on the patient’s skull defect size and age: 58 patients with defects <3 cm² underwent skull repair with pMC (pMC group), 45 patients with defects ≥3 cm² and aged ≥5 years underwent skull repair with cMC (cMC group), and 2 patients with defects ≥3 cm² and aged <5 years underwent skull repair with bMC (bMC group). Postoperative clinical follow-up and imaging examinations were conducted to evaluate bone regeneration, the biocompatibility of the repair materials, and the occurrence of complications. Results All 105 patients were followed up 3-24 months, with an average of 13 months. No material-related complication occurred in any patient, including skin and subcutaneous tissue infection, excessive ossification, and rejection. CT scans at 6 months postoperatively showed bone growth in all patients, and CT scans at 12 months postoperatively showed complete or near-complete resolution of bone defects in all patients, with 58 cases repaired in the pMC group. The CT values of the defect site and the contralateral normal skull bone in the pMC group at 12 months postoperatively were (1 123.74±93.64) HU and (1 128.14±92.57) HU, respectively, with no significant difference (t=0.261, P=0.795). Conclusion MC exhibits good biocompatibility and osteogenic induction ability in skull defect repair. pMC is suitable for repairing small defects, cMC is suitable for repairing large defects, and bMC is suitable for repairing pediatric skull defects.
ObjectiveTo investigate the biocompatibility and immunogenicity of the tracheal matrix decellularized by sodium perchlorate (NaClO4).MethodsBone marrow mesenchymal stem cells (BMSCs) were divided from 2-month-old New Zealand white rabbits. The trachea of 6-month-old New Zealand white rabbits were trimmed to a length of 1.5 cm and randomly divided into control group (group A1, n=5, just stripped the loose connective tissue outside the trachea) and experimental group (group B1, n=5, decellularized by improved NaClO4 immersion method). The cytotoxicity of the scaffold leaching solution was detected by MTT assay, and the major histocompatibility complex (MHC) expression was detected by immunohistochemical method. The 4th generation of BMSCs were seeded onto the scaffold of 2 groups, and the cell activity around the material was observed by inverted microscope after Giemsa staining at 48 hours, while the cells states on the scaffold were observed at 7 and 14 days after culturing by scanning electron microscope. Another 10 6-month-old New Zealand white rabbits were randomly divided into control group (group A2, n=5) and experimental group (group B2, n=5), which implanted the native trachea and decellularized tracheal matrix into the subcutaneous sac of the back neck, respectively. The serum immunoglobulin IgM and IgG contents were analysed at 5, 10, 15, 20, 25, and 30 days after operation, and HE staining observation was performed at 30 days after operation.ResultsMTT assay showed that the proliferation activity of BMSCs cultured in the leach liquor of group B1 was well, showing no significant difference when compared with group A1 and negative control group with pure culture medium (P>0.05). The immunohistochemical staining showed that the decellularized process could significantly reducing the antigenicity of matrix materials. Giemsa staining showed that BMSCs grew well around the two tracheal matrixs (groups A1 and B1) in vitro. Scanning electron microscope observation showed that the cells were attached to the outer wall of the tracheal material in group A1, which present a flat, round, oval shaped, tightly arranged cells and cluster distribution; and in group B1, the cells formed a single lamellar sheet cover the outer wall of the tracheal material, whose morphology was similar to that in group A1, and the growth trend was better. In vivo experimental results showed that the rejection of group B2 was lower than that of group A2. The contens of IgM and IgG in group A2 were significantly higher than those in group B2 at each time point after operation (P<0.05). HE staining showed no signs of rejection, macrophagocyte, or lymphocyte infiltration occurred, and the collagen fibers maintained their integrity in group B2.ConclusionThe decellularized matrix treated by NaClO4 has a fine biocompatibility, while its immunogenicity decreased, and it is suitable for the scaffold material for constructing of tissue engineered trachea.