west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "electrocardiogram" 46 results
  • Extraction and recognition of attractors in three-dimensional Lorenz plot

    Lorenz plot (LP) method which gives a global view of long-time electrocardiogram signals, is an efficient simple visualization tool to analyze cardiac arrhythmias, and the morphologies and positions of the extracted attractors may reveal the underlying mechanisms of the onset and termination of arrhythmias. But automatic diagnosis is still impossible because it is lack of the method of extracting attractors by now. We presented here a methodology of attractor extraction and recognition based upon homogeneously statistical properties of the location parameters of scatter points in three dimensional LP (3DLP), which was constructed by three successive RR intervals as X, Y and Z axis in Cartesian coordinate system. Validation experiments were tested in a group of RR-interval time series and tags data with frequent unifocal premature complexes exported from a 24-hour Holter system. The results showed that this method had excellent effective not only on extraction of attractors, but also on automatic recognition of attractors by the location parameters such as the azimuth of the points peak frequency (APF) of eccentric attractors once stereographic projection of 3DLP along the space diagonal. Besides, APF was still a powerful index of differential diagnosis of atrial and ventricular extrasystole. Additional experiments proved that this method was also available on several other arrhythmias. Moreover, there were extremely relevant relationships between 3DLP and two dimensional LPs which indicate any conventional achievement of LPs could be implanted into 3DLP. It would have a broad application prospect to integrate this method into conventional long-time electrocardiogram monitoring and analysis system.

    Release date:2018-02-26 09:34 Export PDF Favorites Scan
  • Study on Non-invasive Detection of Atherosclerosis Based on Electrocardiogram and Pulse Wave Signals

    Artery stiffness is a main factor causing the various cardiovascular diseases in physiology and pathology. Therefore, the development of the non-invasive detection of arteriosclerosis is significant in preventing cardiovascular problems. In this study, the characterized parameters indicating the vascular stiffness were obtained by analyzing the electrocardiogram (ECG) and pulse wave signals, which can reflect the early change of vascular condition, and can predict the risk of cardiovascular diseases. Considering the coupling of ECG and pulse wave signals, and the association with atherosclerosis, we used the ECG signal characteristic parameters, including RR interval, QRS wave width and T wave amplitude, as well as the pulse wave signal characteristic parameters (the number of peaks, 20% main wave width, the main wave slope, pulse rate and the relative height of the three peaks), to evaluate the samples. We then built an assessment model of arteriosclerosis based on Adaptive Network-based Fuzzy Interference System (ANFIS) using the obtained forty sets samples data of ECG and pulse wave signals. The results showed that the model could noninvasively assess the arteriosclerosis by self-learning diagnosis based on expert experience, and the detection method could be further developed to a potential technique for evaluating the risk of cardiovascular diseases. The technique will facilitate the reduction of the morbidity and mortality of the cardiovascular diseases with the effective and prompt medical intervention.

    Release date:2016-10-02 04:55 Export PDF Favorites Scan
  • An Improved Cubic Spline Interpolation Method for Removing Electrocardiogram Baseline Drift

    The selection of fiducial points has an important effect on electrocardiogram (ECG) denoise with cubic spline interpolation. An improved cubic spline interpolation algorithm for suppressing ECG baseline drift is presented in this paper. Firstly the first order derivative of original ECG signal is calculated, and the maximum and minimum points of each beat are obtained, which are treated as the position of fiducial points. And then the original ECG is fed into a high pass filter with 1.5 Hz cutoff frequency. The difference between the original and the filtered ECG at the fiducial points is taken as the amplitude of the fiducial points. Then cubic spline interpolation curve fitting is used to the fiducial points, and the fitting curve is the baseline drift curve. For the two simulated case test, the correlation coefficients between the fitting curve by the presented algorithm and the simulated curve were increased by 0.242 and 0.13 compared with that from traditional cubic spline interpolation algorithm. And for the case of clinical baseline drift data, the average correlation coefficient from the presented algorithm achieved 0.972.

    Release date: Export PDF Favorites Scan
  • A wearable ballistocardiogram-electrocardiogram union acquisition system

    Ballistocardiogram (BCG) and electrocardiogram (ECG) can realize the detection of cardiac function from mechanical and electrical dimensions respectively. By extracting the corresponding characteristic parameters of the two signals and carrying out joint analysis, an important cardiac physiological index such as cardiac contractility, can be reflected. To overcome the shortcomings of complication and heaviness of the existing acquisition equipment, a wearable BCG-ECG signal acquisition system is designed in this paper, which realizes BCG signal acquisition based on accelerometer and ECG signal acquisition based on conductive rubber electrodes. The signals of 6 healthy persons were collected, and BCG signals collected by piezoelectric films were used as reference signals. The waveform characteristics of signals were compared, and the difference of cardiac cycle acquisition was analyzed. The waveform characteristics of the two signals acquired by the device were consistent with the standard signals, and there was no significant difference in the acquisition of the cardiac cycle between the proposed method and the traditional method. The results show that the system can accurately collect human BCG signals and ECG signals. The system provides a basis for subsequent research on BCG signal formation mechanism and health applications.

    Release date:2018-10-19 03:21 Export PDF Favorites Scan
  • Fetal electrocardiogram signal extraction and analysis method combining fast independent component analysis algorithm and convolutional neural network

    Fetal electrocardiogram (ECG) signals provide important clinical information for early diagnosis and intervention of fetal abnormalities. In this paper, we propose a new method for fetal ECG signal extraction and analysis. Firstly, an improved fast independent component analysis method and singular value decomposition algorithm are combined to extract high-quality fetal ECG signals and solve the waveform missing problem. Secondly, a novel convolutional neural network model is applied to identify the QRS complex waves of fetal ECG signals and effectively solve the waveform overlap problem. Finally, high quality extraction of fetal ECG signals and intelligent recognition of fetal QRS complex waves are achieved. The method proposed in this paper was validated with the data from the PhysioNet computing in cardiology challenge 2013 database of the Complex Physiological Signals Research Resource Network. The results show that the average sensitivity and positive prediction values of the extraction algorithm are 98.21% and 99.52%, respectively, and the average sensitivity and positive prediction values of the QRS complex waves recognition algorithm are 94.14% and 95.80%, respectively, which are better than those of other research results. In conclusion, the algorithm and model proposed in this paper have some practical significance and may provide a theoretical basis for clinical medical decision making in the future.

    Release date:2023-02-24 06:14 Export PDF Favorites Scan
  • Detection algorithm of paroxysmal atrial fibrillation with sparse coding based on Riemannian manifold

    In order to solve the problem that the early onset of paroxysmal atrial fibrillation is very short and difficult to detect, a detection algorithm based on sparse coding of Riemannian manifolds is proposed. The proposed method takes into account that the nonlinear manifold geometry is closer to the real feature space structure, and the computational covariance matrix is used to characterize the heart rate variability (RR interval variation), so that the data is in the Riemannian manifold space. Sparse coding is applied to the manifold, and each covariance matrix is represented as a sparse linear combination of Riemann dictionary atoms. The sparse reconstruction loss is defined by the affine invariant Riemannian metric, and the Riemann dictionary is learned by iterative method. Compared with the existing methods, this method used shorter heart rate variability signal, the calculation was simple and had no dependence on the parameters, and the better prediction accuracy was obtained. The final classification on MIT-BIH AF database resulted in a sensitivity of 99.34%, a specificity of 95.41% and an accuracy of 97.45%. At the same time, a specificity of 95.18% was realized in MIT-BIH NSR database. The high precision paroxysmal atrial fibrillation detection algorithm proposed in this paper has a potential application prospect in the long-term monitoring of wearable devices.

    Release date:2020-10-20 05:56 Export PDF Favorites Scan
  • Advances in artificial intelligence in prediction of atrial fibrillation

    Atrial fibrillation (AF) is one of the most common arrhythmias. Today, there are a large number of AF patients worldwide, and incidence increases with the increase of age. However, the current diagnosis rate of AF via auxiliary examination is relatively low. In view of the widespread application of artificial intelligence (AI) in the medical field, the diagnosis of AF using AI has also become a research hotspot. This article briefly introduces the relevant aspects of AI and reviews the application of AI in AF prediction.

    Release date:2020-12-31 03:27 Export PDF Favorites Scan
  • Advances of Portable Electrocardiogram Monitor Design

    Portable electrocardiogram monitor is an important equipment in the clinical diagnosis of cardiovascular diseases due to its portable, real-time features. It has a broad application and development prospects in China. In the present review, previous researches on the portable electrocardiogram monitors have been arranged, analyzed and summarized. According to the characteristics of the electrocardiogram (ECG), this paper discusses the ergonomic design of the portable electrocardiogram monitor, including hardware and software. The circuit components and software modules were parsed from the ECG features and system functions. Finally, the development trend and reference are provided for the portable electrocardiogram monitors and for the subsequent research and product design.

    Release date: Export PDF Favorites Scan
  • An Improved Wavelet Threshold Algorithm for ECG Denoising

    Due to the characteristics and environmental factors, electrocardiogram (ECG) signals are usually interfered by noises in the course of signal acquisition, so it is crucial for ECG intelligent analysis to eliminate noises in ECG signals. On the basis of wavelet transform, threshold parameters were improved and a more appropriate threshold expression was proposed. The discrete wavelet coefficients were processed using the improved threshold parameters, the accurate wavelet coefficients without noises were gained through inverse discrete wavelet transform, and then more original signal coefficients could be preserved. MIT-BIH arrythmia database was used to validate the method. Simulation results showed that the improved method could achieve better denoising effect than the traditional ones.

    Release date: Export PDF Favorites Scan
  • Technical Research of Non-contact Electrocardiogram Based on Capacitive Coupling

    Based on the capacitance coupling principle, we studied a capacitive way of non-contact electrocardiogram (ECG) monitoring, making it possible to obtain ECG on the condition that a patient is habilimented. Conductive fabric with a good electrical conductivity was used as electrodes. The electrodes fixed on a bed sheet is presented in this paper. A capacitance comes into being as long as the body gets close to the surface of electrode, sandwiching the cotton cushion, which acts as dielectric. The surface potential generated by heart is coupled to electrodes through the capacitance. After being processed, the signal is suitable for monitoring. The test results show that 93.5% of R wave could be detected for 9 volunteers and ECG with good signal quality could be acquired for 2 burnt patients. Non-contact ECG is harmless to skin, and it has advantages for those patients to whom stickup electrodes are not suitable. On the other hand, it is convenient to use and good for permanent monitoring.

    Release date: Export PDF Favorites Scan
5 pages Previous 1 2 3 4 5 Next

Format

Content