Objective To prepare a self-made compound, hemostatic jelly with polylactic acid(PLA), which has the hemostatic and absorbable effect on injured cancellous bone. Methods Two bone defects of 5 mm in diameter and 4 mm in depth were subjected on 20 health rabbits by drilling through their either outside plate of the iliac, and were filled with hemostatic jelly(group A), bone wax(group B) and blank(group C) respectively. Hemostasis were observed and recorded after 1 and 10 minutes. Five specimens were harvested at 2, 4, 8 and 12 weeks postoperatively for histological observation. Results ① Hemostatic effect: Bleeding of injured spongy bone stopped within 10 minutes after the treatment of hemostatic jelly and bone wax, but bleeding of balnk did not stop. Hemostatic jelly and bone wax adhered to bone defects firmly within 10 minutes was after the treatment. ② Absorbable effect: Hemostatic jelly and bone defects have not changed visibly in the first 2 weeks. With histological observation 4 to 8 weeks after the operation, hemastatic jelly was absorbed gradually and replaced by osteogenous tissue. It was absorbed completely after 8 to 12 weeks. Bone wax was not absorbed after 12 weeks, no new bone tissue was observed at bone wax area. The blank was replaced by connective tissue and osteogenous tissue partially after 12 weeks. Conclusion The compound hemostatic jelly manifests both hemostatic and absorbable effects on injured cancellous bone and may substitute for bone wax in clinical application.
Objective To fabricate a novel porous bioactivecomposite biomaterial consisting of poly lactic acid (PLA)bone matrix gelatin(BMG) by using the supercritical carbon dioxide fluid technique (SC-CO2) and to evaluate its osteoinductive activity. Methods The cortical bones selected from healthy adult donors were processed into BMG by the defatting, demineralizing, and deproteinizing processes. PLA and BMG were mixed at a volume radio of 3∶1; then, the PLA-BMG mixed material and the pure PLA material were respectively placed in the supercritical carbon dioxide reaction kettles, and were respectively added by the NaCl particles 100200 μm in diameter for theporosity of the materials so that the porous PLA-BMG composite material and the porous PLA composite material could be formed. The mouse osteoblastlike MC3T3-E1 cells were cultured in the dulbecco’s modified eagle medium (DMEM) supplemented with 10% fetal bovine serum. Then, 20 μl of the MC3T3E1 cell suspensions containing 2 ×106 cells /ml were delivered into the culturing plate (24 wells/plate) made of the different materials, which were co-cultured for 2 weeks. In the PLA-BMG group, 100 μg of the crushed PLA-BMG material was contained in each well; in the PLA group, 100 μg of the crushed PLA material was containedin each well; and in the DMEM group, only DMEM was contained, which served as the control group. There were 6 wells in each group. The quantitative analysis onthe calcification area was performed by the staining of the alizarin red S. Theco-cultured cells were harvested and lysated in 1 ml of 0.2% Nonidet P-40 by the ultrasonic lysating technique. Then, the ALP activity and the Ca content were measured according to the illuminations of the reagent kits. Results The porous PLABMG composite material showed a good homological porosity with a pore diameter of 50-150 μm and a good connectivity between the pores. The ALP activity, the Ca content, and the calcification area were significantly greater in the PLABMG group than in the PLA group and the control group (325.59±70.40 U/gprot, 3.51±1.64 mmol/gprot, 42.98±4.44% vs. 63.62±30.01 U/gprot, 1.04±0.21 mmol/gprot, 9.55±1.94%, and 2.40±1.47 U/gprot, 0.70±0.24 mmol/gprot, 0.86±0.41%; Plt;0.05). Meanwhile, there was a statistically significant difference between the PLA group and the control group in the ALP activity and the calcification area (Plt;0.05). Conclusion The porous PLABMG composite material prepared by the use of SC-CO2 has a good steoinductive activity and can be used as a promising bone biomaterial and a bone tissue engineered scaffold.
摘要:目的:研究生物降解聚DL乳酸(PDLLA)自锁式捆绑带固定骨折的生物力学性能。方法:80只新西兰大白兔随机分为两组,建立股骨干非负重骨折动物模型,应用生物降解自锁式捆绑带固定骨折为实验组,钢丝固定骨折为对照组,分别于术后1、4、8、12周行生物力学检查进行比较。结果:捆绑带组在术后4、8、12周均比钢丝组的弯曲强度高,但4周、12周时Pgt;005,无统计学差异,8周时Plt;005,提示有统计学差异。离体同种固定物不同时间段抗拉强度自身比较:钢丝固定术后4阶段抗拉强度比较Pgt;005,任何两两比较都没有统计学差异,抗拉强度未随术后时间延长发生明显下降。捆绑带固定术后4周与术后1周比较Pgt;005,抗拉强度无明显降低,但术后8周和术后12周时Plt;005,抗拉强度明显下降。结论:生物降解自锁式捆绑带在非负重骨折治疗中可发挥良好的固定作用。生物降解自锁式捆绑带降解时,应力传导促进了骨折的愈合。Abstract: Objective: To study the biomechanics function of selflocking cerclage band made of biodegradable material polyDLlactic acid (PDLLA) in the fixation of fractures. Methods: Eighty rabbits were divided into two groups. Femur fracture models were made. Fractures were fixed using biodegradable selflocking cerclage band in experimental group and metal fixation material in control group. The biomechanics was analyzed and compared after 1, 4, 8 and 12 weeks respectively. Results: The bending strength of experimental group is more ber than that of control group after 4, 8 and 12 weeks, but it was not statistically significant at 4 and 12 weeks (Pgt;005). It was statistically significant at 8 weeks (Plt;005). The tensile strength of the same cerclage instrument was compared at different stage in vitro, and the result of the control group was not statistically significant at the four stage (〖WTBX〗P〖WTBZ〗gt;005). Regarding the changes of tensile strength of the cerclage instrument at different stage, the result of the experimental group was not statistically significant after 1 and 4 weeks (Pgt;005). However, the decrease of tensile strength was statistically significant after 8 and 12 weeks (Plt;005). Conculsion: Biodegradable selflocking cerclage band could be used in thetreatment of nonweightbearing fractures. The stress force conducting promotes healing of fracture when the selflocking biodegradable cerclage band degrades.
Objective To study the result of using nerve conduit coated with chitin and filled with a guide-fiber to repair peripheral nerve defect. Methods Twenty-four female adult SD rats were made the model of 14 mm-gap on bilateral sciatic nerve under sterile condition. The rats were randomly divided into 4 groups(n=6),group A: polymer polyglycolic-lactic acid(PGLA) nerve conduit coated with chitin and filled with a guide-fiber as experimental group to repair 14 mm gap of rat sciatic nerve;group B: PGLA nerve conduit coated with chitin; group C: PGLA nerve conduit; group D: autograft (control group). The repair result was evaluated by normal observation, EMG testing and S-100 histological immunostaining analysis 4 and 12 weeks after operation.Results Four weeks after the operation,there were new regenerated immature fibers in groups A,B and C, 12 weeks after the operation, the regenerated nerve fibers were seen to have bridged the gap. There were myelinated fibers equably distributed and rarely newgenerated nerve fibers in distal parts of group D. The repair result of PGLA nerve conduit coated with a chitin and filled with guide-fiber was better than that of groups B and C(Plt;0.05). There was significant difference of nerve fiber diameter,thickness of myelin sheath and fiber density in group D from those in groups A, B and C(Plt;0.05),but there were degenerative changes such as vacuoles insheaths and myelin separation in proximal and few new regenerated nerve fibers in distal parts of group D. Conclusion PGLA nerve conduit coated with chitin and filled with a guide-fiber offers a possible substitute for the repair of peripheral nerve defect.
OBJECTIVE To confirm membrane-guided tissue regeneration in the healing course of segmental bone defects and study the mechanism. METHODS Segmental, 1 cm osteoperiosteal defects were produced in both radii of 12 rabbits. One side was covered with hydroxyapatite/polylactic acid(HA/PLA) membrane encapsulated as a tube. The contralateral side served as an untreated control. Healing courses were detected by radiographic and histologic examinations. RESULTS All control sides showed nonunion, whereas there were consistent healing pattern in test sides. CONCLUSION Membrane technique can promote bone regeneration.
Objective To establish an animal model for repairing the sciatic nerve defect with a biodegradable poly D,L-lactic acid/nerve growth factor (PDLLA/NGF) that can control the release conduit in rats and to observe an effect of the conduit on the sciatic nerve regeneration. Methods The PDLLA conduit and the PDLLA/NGF-controlled release conduit (NGF 450 U per conduit) were madewith the solvent-volatilixation method. Forty male SD rats were randomly and equally divided into 4 groups. The middle segments (10 mm) of the sciatic nerves of the rats were excised and were then repaired with the sciatic nerve autograft(Group A), with the PDLLA conduit (Group B), with the PDLLA conduit and an injection of NGF (30 U) into the conduit (Group C), and with the PDLLA/NGF controlled-release conduit (Group D), respectively, with the 10-mm nerve defect left behind. Three months after operation, the morphologic parameters of the nerve regeneration were observed and evaluated under light microscope and electron microscope, and the image analysis was also made. Results Three months after operation, porous adherence between the conduit and the surrounding tissues could be observed. The conduit presented a partial biodegradation but still remainedintact in the outline and the proximal nerve regenerated through the conduit cavity. Based on the histological observation, the quantity, uniformity, and maturity of the nerve fiber regeneration in Groups A and D were better than those in Groups B and C. The image analysis indicated that there were no significant differences in the nerve fiber diameter, axon diameter or myelin thickness between Group A and Group D (P>0.05). However, all the parameters in Groups A and D were better than those in Groups B and C (P<0.05). Conclusion The PDLLA/NGF-controlled release conduit can effectively promote the sciatic nerve regeneration of rats. Its morphological index is similar to that of the nerve autograft.
ObjectiveTo investigate the value of the change trend of lactic acid level 24 h after operation in predicting the complications of upper gastrointestinal ulcer perforation. MethodsA total of 167 patients with upper digestive tract ulcer perforation who underwent surgical treatment in Shougang Hospital of Peking University from March 2021 to June 2023 were selected as the study objects, and were divided into mild to moderate group (n=117) and severe group (n=50) according to the severity of the disease. General data and lactic acid levels in 24 h after surgery were compared between the two groups. In addition, according to whether the patients had complications or not, they were divided into a group without complications (n=119) and a group with complications (n=48). The general data of the two groups were compared. A combined model was constructed, and Cox regression model was used to analyze the relationship between the change of lactic acid level at 24 h after operation and the complications of infection. Logistic regression model combined with restricted cubic spline model was used to analyze the dose-response relationship between lactic acid level and infection complications in patients with upper gastrointestinal ulcer perforation 24 h after operation. Log-binomial model was used to analyze the risk effect of complication types on lactic acid levels in patients with upper gastrointestinal ulcer perforation. ResultsAt 8, 16 and 24 h after operation, lactic acid levels in both groups (mild to moderate group and severe group) were significantly lower than before operation, and lactic acid level in mild to moderate group was significantly lower than that in severe group (P<0.05). Repeated measurement ANOVA showed that the time effect, intergroup effect and interaction effect of lactic acid levels were significantly different between the two groups (P<0.05). There were significant differences in exhaust time, postoperative hospital stay, C-reactive protein, lactic acid level and red blood cell distribution width between the complicated group and the uncomplicated group (P<0.05). The combined model showed that each longitudinal increase of 1 mmol/L in lactic acid level 24 h after operation, was associated with a 4% increased risk of infection complications. The limit cubic spline map showed that lactic acid level at 24 h after operation was 4.22 mmol/L as the critical point of the dose-response relationship in the infection complications of patients with upper gastrointestinal ulcer perforation. Log-binomial model analysis results showed that when lactic acid level ≥4.22 mmol/L, patients with upper gastrointestinal ulcer perforation in the complication group had the highest risk of abdominal infection. The risk ratios (95%CI) before and after adjustment were 2.09 (1.25, 2.64), 2.16 (1.28, 2.05) and 2.20 (1.32, 2.63) times of those in the uncomplicated group, and the risk ratios of different lactic acid levels were statistically significant before and after adjustment (P<0.05). ConclusionLactic acid level increased 24 h after operation in patients with upper gastrointestinal ulcer perforation is closely related to infection complications, and has a high predictive value for infection complications in patients with upper gastrointestinal ulcer perforation.
Objective To study the mechanism of ectopic osteogenesis of nacre/Polylactic acid (N/P) artificial bone combined with allogenic osteoblasts, and to explore the possibility as a scaffold material of bone tissue engineering. Methods The allogenic- osteoblasts seeded onto N/P artificial bone were co-cultured in vivo 1 week.The N/P artificial bone with allogenic osteoblasts were implanted subcutaneously into the left back sites of the New Zealand white rabbits in the experimental group and the simple N/P artificial bone into the right ones in the control group. The complexes were harvested and examined by gross observation, histologic analysis and immunohistochemical investigation 2, 4 and 8 weeks after implantation respectively.Results In experimental group, the osteoid formed after 4 weeks, and the mature bone tissue withbone medullary cavities formed after 8 weeks; but in control group there was nonew bone formation instead of abundant fibrous tissue after 4 weeks, and more fibrous tissue after 8 weeks.Conclusion N/P artificial bone can be used as an optical scaffold material of bone tissue engineering.
In order to find an ideal biological material to prevent peridural adhesion following laminectomy, 30 rabbits were used as animal model, in each of which 2 defects with a size of 1 cm x 0.5 cm were made following laminectomy of L3, L5 spine. One of the defects was covered extradurally with chitosan, gelatin foam or PLA membrane respectively, while the other defect was exposed as control. All of these animals were sacrificed on the 2nd, 4th, 6th, 8th and 10th week after operation, and the extradural fibrosis and adhesion of every animal were evaluated by gross observation and histological examinations. It was revealed that in the chitosan and PLA membrane groups, the extradural tissue was smooth without thickening and there was no fibrous proliferation or adhesion in the epidural cavity, and that in the chitosan group, the growth of fibroblast was restrained but the growth of the epithelial cells was promoted significantly, thus, wound healing was rapid. In the control group and gelatin foam group, obvious extradural fibrosis and adhesion were observed and the extradural space had almost disappeared. Therefore, it was concluded that the biodegradable PLA membrane and chitosan were both an ideal material in the prevention of postoperative epidural adhesion.
Objective To investigate the feasibility of fetal liver cells for liver tissue engineering, the supporting function of poly L lactic acid (PLLA) scaffold for fetal liver cells and the effects of oncostatin M (OSM), nicotinamide (NA) and dimethyl sulfoxide(DMSO) on growth and hepatic differentiation. Methods After three dimensional PLLA scaffolds having a porous structure were prepared by using NH 4HCO 3 particle, fetal liver cells obtained from E14.5 C57BL/6CrSlc murine embryos were inoculated in the scaffolds. Cells were cultured in Williams’E medium with or without OSM, NA and DMSO for 30 days. Changes in cell number, liver-specific function, and cellular morphology were observed. Results When compared with in monolayer culture, cell number and albumin secretion increased obviously in three-dimensional PLLA. Alburmin secretion increased slightly in OSM group of monolayer culture, but increased obviously in OSM groupo of PLLA culture and in OSM/NA/DMSO group of both monlayer and PLLA cultures. Conclusion The three-dimensional PLLA scaffold is a good supporting material for the cultivation of tetal liver cells. OSM, NA and DMSO remarkaly stimulated maturation of hepatic parenchymal cells in vitro in terms of morphology and liver-specific function.