In order to study rheologic property of bile flow between gallbladder and biliary duct during biliary obstruction,we made a model of complete biliary obstruction(CBO)in dogs.The results showed that:①The behavior of bile flow between gallbladder and biliary duct in noemal dogs belonged to Casson flow;②When the duration of CBO prolonged,the behavior of bile flow between gallbladder and biliary tract in the CBO dogs still belonged to Casson flow.The changes of yield stress and apparent viscosity at high or low shear rate in bile flow of the biliary duct were similar to that in bile flow of the gallbladder.
Total hip replacement (THR) is replacing the prosthesis stem similar to human bone that takes advantage of the material with both good mechanical properties and biocompatibility to the damaged articular surface. Thus it can not only alleviate or even eliminate the pain but also effectively maintain the joint stability and freedom and restore its normal performance. Finite element analysis was used in this study to establish a 3D model of artificial hip stem, and explore its fatigue properties of different materials to ensure the safety and reliability. The calculating obtained two results of different metal hip prosthesis, including lifetime and deformation. The minimum service life of titanium prosthesis reaches 568 million times, which satisfies ISO standards, while the stainless steel does not suit to be a prosthesis material.
The research on brain functional mechanism and cognitive status based on brain network has the vital significance. According to a time–frequency method, partial directed coherence (PDC), for measuring directional interactions over time and frequency from scalp-recorded electroencephalogram (EEG) signals, this paper proposed dynamic PDC (dPDC) method to model the brain network for motor imagery. The parameters attributes (out-degree, in-degree, clustering coefficient and eccentricity) of effective network for 9 subjects were calculated based on dataset from BCI competitions IV in 2008, and then the interaction between different locations for the network character and significance of motor imagery was analyzed. The clustering coefficients for both groups were higher than those of the random network and the path length was close to that of random network. These experimental results show that the effective network has a small world property. The analysis of the network parameter attributes for the left and right hands verified that there was a significant difference on ROI2 (P = 0.007) and ROI3 (P = 0.002) regions for out-degree. The information flows of effective network based dPDC algorithm among different brain regions illustrated the active regions for motor imagery mainly located in fronto-central regions (ROI2 and ROI3) and parieto-occipital regions (ROI5 and ROI6). Therefore, the effective network based dPDC algorithm can be effective to reflect the change of imagery motor, and can be used as a practical index to research neural mechanisms.
ObjectiveTo study the immunological properties of osteogenically differentiated umbilical cord blood derived mesenchymal stem cells (UCB-MSCs). MethodsUCB-MSCs were isolated from the umbilical cord vein, and were expanded; the cells at passage 3 were osteogenically induced for 2 weeks in vitro. The expressions of human leukocyte antigen I (HLA-I) and HLA-Ⅱ molecules were observed by flow cytometry analysis before and after osteogenic induction. Peripheral blood T lymphocytes were isolated and cultured with osteoblastic induced or non-osteoblastic induced UCB-MSCs in different cell concentrations of 1×102, 1×103, 1×104, and 1×105 cells/well. The intake value of 3H-thymidine was calculated with luminescence counter. Then T lymphocytes were pretreated with PHA, and co-cultured with osteoblastic induced and non-osteoblastic induced UCB-MSCs as described above. IL-2 was further added to test the reversed effect of T lymphocytes proliferation stimulated by UCB-MSCs. Finally, to investigate whether the immunomodulatory effects on T lymphocytes proliferation depend on direct or indirect cell contact, the Transwell chamber culture system of UCB-MSCs and T lymphocytes was established. ResultsFlow cytometry analysis showed that non-osteoblastic induced UCB-MSCs expressed HLA-I but did not express HLA-Ⅱ; the expression of HLA-Ⅱ increased in osteoblastic induced UCB-MSCs. No T lymphocyte response was stimulated by non-osteoblastic induced UCB-MSCs, but osteoblastic induced UCB-MSCs could stimulate the proliferation of allogeneic T lymphocytes, especially after IFN-γ treatment. Non-osteoblastic induced UCB-MSCs of 1×104 and 1×105 cells/well could suppress the proliferation of T lymphocytes evoked by PHA, and this suppression could be reversed by the addition of IL-2. While osteoblastic induced UCB-MSCs did not have such suppressive effect. The results of the Transwell culture system also showed that non-osteoblastic induced UCB-MSCs could obviously inhibit the proliferation of T lymphocytes, but the osteoblastic induced UCB-MSCs could not. ConclusionThe immunological properties of UCB-MSCs will change accordingly after osteogenic induction, so UCB-MSCs might not be suitable for the seed cells of bone tissue engineering.
To serve as carriers of cells and bioactive molecules, three-dimensional scaffolds play a key role in bone defect repair. The chemical component and microstructure of the scaffold can affect the mechanical properties and seed cells. A variety of fabrication techniques have been used in producing scaffolds, some made random porous structure, some created well-designed structure using rapid prototyping methods, and others prepared bio-derived materials as scaffolds. However, scaffolds may vary in their inner structure, mechanical properties and repairing efficiency as well because of different manufacturing methods. In this review, we overview the main achievements concerning the effects of material and microstructure on the mechanical performance, seed cells and defect repair of bone scaffolds.
Objective To investigate the effect of surface propertyof different polyether-ester block copolymers[poly(ethylene glycol-terephthalate)/poly(butylene terephthalate), PEGT/PBT] on the growth of smooth muscle cells (SMCs) and endothelial cells(ECs). Methods Three kinds of copolymers were synthesized, which were 1000-T20 (group A), 1000PEGT70/PBT30 (group B) and 600PEGT70/PBT30 (group C). The water-uptake and contact angle of three polyether-ester membranes were determined. The canine aorta smooth muscle cells and external jugular vein endothelial cells were primarily harvested, subcultured, and then identified. The proliferation of SMCs and ECs on the different polyether-ester membranes were investigated. Results The water-uptake of three copolymers arranged as the sequence of group C<group A<group B, and contact angle as the sequence of group C>group A>group B, indicating group B being more hydrophilic. However, smooth musclecells andendothelial cells grew poorly on the membrane of group B after low density seeding, but proliferated well on the membranes of group A and group C. Conclusion In contrast with more hydrophilic 1000PEGT70/PBT30, moderately hydrophilic 1000-T20 and 600PEGT70/PBT30 has better compatibility with vascular cells. The above results indicate that the vascular cells can grow well on moderately hydrophilic PEGT/PBT and that PEGT/PBT can be used in vascular tissue engineering.
Tricalcium phosphate (TCP) is one of the most widely used bioceramics for constructing bone tissue engineering scaffold. The three-dimensional (3D) printed TCP scaffold has precise and controllable pore structure, while with the limitation of insufficient mechanical properties. In this study, we investigated the effect of sintering temperature on the mechanical properties of 3D-printed TCP scaffolds in detail, due to the important role of the sintering process on the mechanical properties of bioceramic scaffolds. The morphology, mass and volume shrinkage, porosity, mechanical properties and degradation property of the scaffold was studied. The results showed that the scaffold sintered at 1 150℃ had the maximum volume shrinkage, the minimum porosity and optimal mechanical strength, with the compressive strength of (6.52 ± 0.84) MPa and the compressive modulus of (100.08 ± 18.6) MPa, which could meet the requirements of human cancellous bone. In addition, the 1 150℃ sintered scaffold degraded most slowly in the acidic environment compared to the scaffolds sintered at the other temperatures, demonstrating its optimal mechanical stability over long-term implantation. The scaffold can support bone mesenchymal stem cells (BMSCs) adherence and rapid proliferation and has good biocompatibility. In summary, this paper optimizes the sintering process of 3D printed TCP scaffold and improves its mechanical properties, which lays a foundation for its application as a load-bearing bone.
ObjectiveTo investigate the effects of micro/nano-structure and antimicrobial peptides (AMPs) on antibacterial properties of titanium (Ti) metallic surface.MethodsTi disks were treated via sandblasted large-grit acid-etched (SLA) and alkali-heat treatment (AHT) to build the micro/nano-structure, on which AMPs were spin-coated with a certain amount (10, 30, 50, 70, and 90 μg). Scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) were used to observe the surface structure and characterize the surface elements (i.e. contents of C, N, O, and Ti). Ti disks loaded with AMPs of difference amounts were co-cultured with Staphylococcus aureus (S. aureus) for 24 hours. After that, the formation and dimension of antibacterial circle were measured. Furthermore, the Ti disks treated with different approaches (untreated, SLA treatment, SLA+THA treatment, and 90 μg AMPs-loaded samples) were co-cultured with S. aureus and Escherichia coli (E.coli) for 3 hours, bacterial adhesion on the disks were evaluated by using SEM. The antibacterial performances in solution were quantitatively evaluated by immersing the Ti disks in bacterial solutions and measuring the absorbance (A) values.ResultsIt was found that the nanoporous structure could be easily constructed by SLA+AHT approach. After spin-coating AMPs, the nanopores with the diameter less than 200 nm were almost covered. According to the element analysis, with the increase of AMPs, the C content gradually increased; the N content was not detected until AMPs amount reached 70 μg on the disks. The diameter of antibacterial circle clearly depended on the AMPs amount. The Ti disks loaded with 90 μg AMPs had significantly larger antibacterial circles than the other Ti disks (P<0.05). Based on the SEM observation, the Ti disks loaded with 90 μg AMPs has the least bacterial attachment compared with the other Ti disks (P<0.05). TheA value of bacterial solution immersed with the Ti disks loaded with 90 μg AMPs was much lower than the other Ti disks (P<0.05).ConclusionThe approach of micro/nano-structure and AMPs can improve the antibacterial properties of Ti metallic surface.
In order to overcome the influence of stray light and impurity on the image of video laryngoscope, we designed an optical structure by using TracePro, a simulation software, to imitate optical path status. Images are captured by CMOS sensor which has the size of 4.5 mm×18 mm and the pixel size is 1.75 μm×1.75 μm. The sensor is placed in the elbow of the laryngoscope, and the elbow has the size of 9 mm×10 mm. As a result, the video laryngoscope could meet the requirements, including wide viewing angle (80°), short focal length (2.8 mm), long working distance (10 cm), and least impurity. In the test, the image was clear and there was no facula or impurity in the condition of required illumination, and thus stray light and image impurity were eliminated and the image quality was improved.
Objective To prepare silver-containing hydroxyapatite coating (hydroxyapatite/Ag, HA/Ag) and investigate its antibacterial property and biocompatibil ity in vitro. Methods Vacuum plasma spraying technique was adopted to prepare HA/Ag coating on titanium alloy substrate (3% Ag). After incubating the HA/Ag and the HA coating under staphylococcus aureus and pseudomonas aeruginosa suspensions of 2% tryptic soy broth (TBS) medium for 2, 4 and 7 days, respectively, the biofilm on the coatings was examined by confocal laser scanning microscope, and the bacterial density and viable bacterial percentage of bacterial biofilm were calculated. Meanwhile, the micro-morphology of bacterial biofilm was observed by SEM, the cytotoxicity was detected via MTT and the biocompatibil ity of biofilm was evaluated by acute aemolysis test. Results Compared with HA coating, the bacterial biofilm’s thickness on the surface of HA/Ag coating witnessed no significant difference at 2 days after culture (Pgt; 0.05), but decreased obviously at 4 and 7 days after culture (P lt; 0.01). The bacterial density of the biofilm increased with time, but there was no significant difference between two coatings (P gt; 0.05) at 2, 4 and 7 days after culture. The viable bacterial percentage of the biofilms on the surface of HA/Ag coating decreased obviously compared with that of HA coating at 2, 4 and 7 days after cultureP lt; 0.01). The MTT notified the cytotoxic grade of both coatings was zero. The acute haemolysis assay showed that the hemolytic rate of HA/Ag and HA coating was 0.19% and 0.12%, respectively. Conclusion With good biocompatibil ity, significant antibacterial property against staphylococcus aureus and pseudomonas aeruginosa, no obvious cytotoxicity and no erythrocyte destruction, the vacuum plasma sprayed HA/Ag coating is a promising candidate for the surface of orthopedic metal implants to improve their osseointegration and antibacterial property.