Spinal cord injury (SCI) is a complex pathological process. Based on the encouraging results of preclinical experiments, some stem cell therapies have been translated into clinical practice. Mesenchymal stem cells (MSCs) have become one of the most important seed cells in the treatment of SCI due to their abundant sources, strong proliferation ability and low immunogenicity. However, the survival rate of MSCs transplanted to spinal cord injury is rather low, which hinders its further clinical application. In recent years, hydrogel materials have been widely used in tissue engineering because of their good biocompatibility and biodegradability. The treatment strategy of hydrogel combined with MSCs has made some progress in SCI repair. This review discusses the significance and the existing problems of MSCs in the repair of SCI. It also describes the research progress of hydrogel combined with MSCs in repairing SCI, and prospects its application in clinical research, aiming at providing reference and new ideas for future SCI treatment.
Objective To determine the feasibility, safety, and efficacy of common pedicle screw placement under direct vision combined with dome shaped decompression via small incision for double segment thoracolumbar fracture with nerve injury. Methods A retrospective analysis was performed on the clinical data of 32 patients with double segment thoracolumbar fracture with nerve injury undergoing common pedicle screw placement under direct vision combined with dome shaped decompression via small incision between November 2011 and November 2015 (combined surgery group), and another 32 patients undergoing traditional open pedicle screw fixation surgery (traditional surgery group). There was no significant difference in gender, age, cause of injury, time of injury-to-surgery, injury segments and Frankel classification of neurological function between two groups (P>0.05). The length of soft tissue dissection, the operative time, the blood loss during surgery, the postoperative drainage, the visual analogue scale (VAS) of incision after surgery, and recovery of neurological function after surgery were evaluated. Results All cases were followed up 9 to 12 months (mean, 10.5 months) in combined surgery group, and 8 to 12 months (mean, 9.8 months) in traditional surgery group. The length of soft tissue dissection, the operative time, the blood loss during surgery, the postoperative drainage, and the postoperative VAS score in the combined surgery group were significantly better than those in the traditional surgery group (P<0.05). Dural rupture during surgery and pedicle screw pulling-out at 6 months after surgery occurred in 2 cases and 1 case of the combined surgery group; dural rupture during surgery occurred in 1 case of the traditional surgery group. The X-ray films showed good decompression, and fracture healing; A certain degree of neurological function recovery was achieved in two groups. Conclusion Common pedicle screw placement under direct vision combined with dome shaped decompression via small incision can significantly reduce iatrogenic trauma and provide good nerve decompression. Therefore, it is a safe, effective, and minimally invasive treatment method for double segment thoracolumbar fracture with neurological injury.
Objective To develop a tractive spinal cord injury model in rats with a novel spinal distractor so as to supply the rel iable animal model for researching the pathological mechanism and rehabil itation treatment of tractive spinal cordinjury. Methods A novel spinal distractor was prepared based on previous study. Sixty adult Sprague Dawley rats (weighing 250-300 g) were randomly divided into 5 groups, 12 rats in each group. T12-L3 spinal structures in the rear area were exposed and then T13-L2 spinal cords were revealed via dual laminectomy and kept integrity. In group A, a novel spinal distractor was placed without distraction; in groups B, C, D, and E, the T12-L3 spines were tracted with a novel spinal distractor which put on transverses process of T12-L3 vertebrae. During the tractive period, the somatosensory evoked potential (SEP) was used to monitor spinal cord function. The SEP ampl itudes descended 50% and kept distracting for 5 minutes in group B and for 10 minutes in group C, and descended 70% and kept distracting for 5 minutes in group D and for 10 minutes in group E, respectively to establ ish the tractive spinal cord injury model of T11-L2. The improved combine behavioral score (ICBS) was recorded at 1 and 7 days after injury in 6 rats of each group. The T13-L2 spinal tissue specimens were harvested for the morphological observation by HE and Nissl’s staining and for neurons counting. Results In group A, the ICBS score was 0 at 1 and 7 days after operation, showing significant difference when compared with the scores of the other groups (P lt; 0.05). The ICBS scores of groups D and E were significantly higher than those of groups B and C (P lt; 0.05). Edema and hemorrhage were observed in spinal cord surface and normal morphological structures were destroyed at different extent in groups B, C, D, and E at 1 day. There were adherence and congestion between spinal cord surface and peripheral issue without luster at 7 days, and dura depression was observed at the injury section, especially in group E. Necrosis and dissolution occurred in some neurons, and Nissl body structure dissolved or disappeared in groups B, C, D, and E. The neuron counting gradually decreased in accordance with the aggravation of injury in groups B, C, D, and E, showing significant difference when compared with group A (P lt; 0.05). Significant differences in neuron counting were found among groups B, C, D, and E (P lt; 0.05). Conclusion The tractive spinal cord injury model in rats can be successfully establ ished with novel spinal distractor, and the model establ ished by SEP ampl itude descending 70% and keeping distracting for 10 minutes is more suitable for study in tractive spinal cord injury.
Objective To explore the effects of human urine-derived stem cells (hUSCs) and hUSCs combined with chondroitinase ABC (chABC) on the expressions of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in the spinal cord injury (SCI) of rats, and to investigate the underlying mechanism. Methods hUSCs were cultured from human urine, and their phenotypes were detected by flow cytometry. The SCI model of rats were made via Allen method. Sixty Sprague Dawley rats were divided into 5 groups (n=12): the sham operation group (group A), SCI group (group B), SCI+hUSCs group (group C), SCI+chABC group (group D), and SCI+hUSCs+chABC group (group E). Basso, Beattie, Bresnahan (BBB) score was used to measure the lower extremity motor function of rats in each group at 10, 20, and 30 days after operation. Real-time fluorescent quantitative PCR was used to detect the relative mRNA expressions of NGF and BDNF at 30 days. Meanwhile, the protein expression of NGF and BDNF were confirmed by immunohistochemistry staining. The relative protein expressions of Bax and Bcl-2 were detected by Western blot. Results The hUSCs were identified to have multipotential differentiation potential. At 10, 20, and 30 days, BBB score was significantly lower in group B than in groups A, C, D, and E, in groups C, D, and E than in group A, in groups C and D than in group E (P<0.05). Real-time fluorescent quantitative PCR and immunohistochemistry staining demonstrated that the expressions of NGF and BDNF were significantly lower in group B than in groups A, C, D, and E, in groups C, D, and E than in group A, in groups C and D than in group E (P<0.05); but there was no significant difference between groups C and D (P>0.05). Western blot results indicated that the protein expression of Bax was significantly higher in group B than in groups A, C, D, and E, in groups C, D, and E than in group A, in groups C and D than in group E (P<0.05). Meanwhile, the protein expression of Bcl-2 was significantly lower in group B than in groups A, C, D, and E, in groups C, D, and E than in group A, in groups C and D than in group E (P<0.05). Conclusion hUSCs can protect SCI and this positive effect can be enhanced by chABC; this neuro-protective effect may depend on promoting the expressions of NGF and BDNF, and suppressing the neuronal apoptosis.
Objective To discuss the clinical characteristics, mechanism, and treatment of odontoid fracture combined with lower cervical spinal cord injuries without fracture or dislocation. Methods According to the inclusion and exclusion criteria, 7 male patients aged 37-71 years (mean, 51.4 years), suffered from odontoid fractures combined with lower cervical spinal cord injuries without fracture or dislocation were analyzed retrospectively between June 2007 and October 2015. The trauma causes were traffic accidents in 2 cases, fall in 2 cases, and hit injury in 3 cases. The time from injury to admission was 2 hours to 3 days with an average of 9 hours. According to Anderson-Grauer classification of odontoid fracture, 1 case of type IIA, 3 cases of type IIB, 2 cases of type IIC, and 1 case of shallow type III were found. The cervical spinal cord injuries affected segments included C4, 5 in 1 case, C4–6 in 2 cases, and C5–7 in 4 cases. All the cervical spine had different degenerative changes: 2 of mild, 3 of moderate, and 2 of severe. The lower cervical spinal cord injury was assessed by Sub-axial Injury Classification (SLIC) with scoring of 4-6 (mean, 5.1). The visual analogue scale (VAS) score was used to evaluate the occipital neck pain with scoring of 7.8±1.0; the neurological function was assessed by American Spinal Injury Association (ASIA) as grade B in 1 case, grade C in 4 cases, and grade D in 2 cases; and Japanese Orthopedic Association score (JOA) was 9.2±3.9. For the odontoid fractures, 4 cases were fixed with anterior screw while the others were fixed with posterior atlantoaxial fixation and fusion. For the lower cervical spine, 4 cases were carried out with anterior cervical corpectomy and titanium fusion while the others with anterior cervical disecotomy and Cage fusion. Results The operation time was 178-252 minutes (mean, 210.2 minutes); the intraoperative blood loss was 60-140 mL (mean, 96.5 mL) and with no blood transfusion. All incisions healed primarily. All the patients were followed up 12-66 months (mean, 18 months). There was no direct surgical related complications during operation, and all bone grafting got a fusion at 6-9 months (mean, 7.7 months) after operation. There was no inter-fixation failure or loosening. At last follow-up, the VAS score declined to 1.7±0.7 and JOA score improved to 15.1±1.7, showing significant differences when compared with preoperative ones (t=18.064, P=0.000; t=–7.066, P=0.000). The neurological function of ASIA grade were also improved to grade D in 5 cases and grade E in 2 cases, showing significant difference (Z=–2.530, P=0.011). Conclusion Complex forces and degeneration of lower cervical spine were main reasons of odontoid fracture combined with lower cervical spinal cord injuries without fracture or dislocation. The type of odontoid fracture and neurological deficit status of lower cervical spinal cord were important to guide making strategy of one-stage operation with a satisfactory clinic outcome.
In order to investigate the clinical significance of electron-neurogram for evaluating the degree and prognosis of acute traumatic cervical spinal cord injury without fracture or dislocation, electron-neurogram and sensory evoked potential (SEP) of the upper limbs in 4 such cases were recorded from the 3rd to 30th day after the injury. The results showed SEP and MEP could be obtained from every nerve in both upper limbs, and continous monitoring of SEP and MEP could provide valuable data to judge the degree and prognosis of the injury in spinal cord.
ObjectiveTo explore the practice of the evidence-based treatment strategy for cervical spinal cord injury. MethodsOne patient with cervical spinal cord injury was admitted to our hospital on January 3, 2013. We obtained medical evidences by searching databases and regulated the best treatment after evaluating the patient's comprehensive conditions. And then, the whole treatment strategy was fully implemented. Finally, the consequent results were evaluated. ResultsThe evidence-based medicine showed that the therapeutic targets were to save the residual function, prevent complications, and promote the recovery of neural function. Based on the real-time conditions of patient, we developed and practiced the evidence-based comprehensive rehabilitation programs, including absolute rest in bed, high-dose steroids, neurotrophic drugs, Chinese medicine rehabilitation and prevention of complications. After a follow-up of half a year, the patient obtained a good curative effect. The patient was saved from paralyzing. Moreover, the patient restored the capacity of standing, walking and a certain level of self-care ability. ConclusionFor the cervical spinal cord injury, treatment decision based on evidence-based medicine is more scientific, and it can ensure maximum benefit for the patients. Therefore, it is worthy of popularizing.
Objective To explore the related factors of upper urinary tract deterioration (UUTD) in spinal cord injury patients using intermittent catheterization (IC-SCI) in the community. Methods Patients with spinal cord injury in the Chinese community were selected for investigation between August 3 and August 31, 2020. The included patients were divided into UUTD group and non-UUTD group. The basic information, intermittent catheterization practices, and urinary complications were compared between the two groups. Logistic regression was used to analyze the risk factors contributing to UUTD. Results A total of 431 patients were surveyed. Among them, there were 310 males and 121 females, 246 cases in the non-UUTD group and 185 cases in the UUTD group. There were statistically significant differences in the disease duration, gender, etiology, urinary incontinence, urinary tract infection, bladder calculi and nephrolithiasis between the two groups (P<0.05); there was no statistically significant difference in the other indicators between the two groups (P>0.05). The results of logistic regression analysis showed that urinary tract infection [odds ratio (OR)=3.229, 95% confidence interval (CI) (1.706, 6.110), P<0.001], nephrolithiasis [OR=4.846, 95%CI (2.617, 8.973), P<0.001], and urinary incontinence [OR=2.345, 95%CI (1.116, 4.925), P=0.024] were risk factors for UUTD. Conclusion Urinary tract infection, nephrolithiasis and urinary incontinence are independent risk factors for UUTD in community-based IC-SCI patients and deserve attention for preventive strategies.
This article investigates the role of AMP-activated protein kinase (AMPK) and its downstream signaling targets in mediating cellular processes such as autophagy, apoptosis, and inflammation, offering insights into how acupuncture may treat common central nervous system (CNS) diseases, including ischemic stroke, spinal cord injury, Parkinson disease, and Alzheimer disease. AMPK and its downstream effectors are pivotal in the signaling pathways that underlie the pathophysiology of CNS diseases. These pathways are implicated in a variety of cellular responses that contribute to the progression of neurological disorders. During CNS injury, AMPK can be activated through phosphorylation, triggering the regulation of downstream molecules and exerting protective effects on neuronal function. Acupuncture has been shown to promote neuroprotection and enhance recovery in CNS diseases through multiple mechanisms, one of which involves the activation of AMPK-related signaling pathways. Nevertheless, numerous unresolved challenges remain in this research field.
Objective To investigate the effect of quantitative semi-transected blade on the improvement of spinal cord semi-transected and lump defect model. Methods Forty-eight male Sprague Dawley rats (weighing 220-250 g) were divided into the experimental group (n=24) and control group (n=24). The spinal cord semi-transected and lump defect model was made by self-made quantitative semi-transected blade in the experimental group, and by ophthalmic scalpel in the controlgroup. Then, the complications were observed; the electrophysiological results were detected before modeling and at 21 days after modeling; the histological changes at margin of lump defect were observed at 6 hours, 5 days, and 28 days; Basso, Beattie, and Bresnahan (BBB) scores were detected at 1, 3, 5, 7, 14, 21, 28, 35, 42, 56, and 84 days after modeling. Results There was significant difference in the mortality between the experimental group (0) and the control group (26.67%) (P=0.028). Electrophysiological examination: there was no significant difference in latency and ampl itude of motor evoked potentials (MEP) and sensory evoked potentials (SEP) between 2 groups at preoperation (P gt; 0.05); at 21 days after operation, latencies of MEP and SEP increased and the amplitude decreased in the control group, showing significant differences when compared with those in the experimental group and the preoperative values (P lt; 0.05), but no significant difference was seen between preoperation and postoperation in the experimental group (P gt; 0.05). Histological examination: in the control group, small hematoma could be observed at normal side at 6 hours after modeling, increased spaces of spinal tissue and perineural invasion were observed at 5 days, and small cavity formed without normal motoneurons at 28 days in the margin of lump defect. In the experimental group, no small hematoma could be observed at 6 hours after modeling, no inreversible injury of neuron and small cavity were observed at 5 days, and normal motoneurons were observed without small cavity at 28 days in the margin of lump defect.BBB scores: except the scores between experimental group and control group at affected side (P gt; 0.05), there were significant differences between groups, and between normal side and affected side for intragroup (P lt; 0.05). Conclusion Semi-transected and lump defect model could be set up successfully by self-made quantitate semi-transected blade, procedure is repetitive and the model is stable. This model is an ideal model for semi-transected spinal cord injury.