Abstract: Objective To analyze risk factors for perioperative mortality in the arterial switch operation (ASO), in order to provide better operation and decrease the mortality rate. Methods We enrolled 208 ASO patients including 157 males and 51 females at Fu Wai Hospital between January 1, 2001 and December 31, 2007. The age ranged from 6 h to 17 years with the median age of 90 d and the weight ranged from 3 kg to 43 kg with the median weight of 5 kg. Among the patients, 127 had transposition of great artery (TGA) with ventricular septal defect (VSD), and 81 patients had TGA with intact ventricular septum (IVS) or with the diameter of VSD smaller than 5 mm. Coronary anatomy was normal (1LCX2R) in 151 patients and abnormal in the rest including 15 patients with single coronary artery, 6 with intramural and 36 with inverse coronary artery. Preoperative, perioperative and postoperative clinical data of all patients were collected to establish a database which was then analyzed by univariate analysis and multivariate logistic regression analysis to find out the risk factors formortality in ASO. Results There were 24 perioperative deaths (11.54%) in which 12 died of postoperative infection with multiple organ failure (MOF), 10 died of low cardiac output syndrome, 1 died of pulmonary hypertension, and 1 died of cerebral complications. Among them, 20 patients (18.30%) died in early years from 2001 to 2005, while only 4 (4.00%) died in the time period from 2006 to 2007, which was a significant decrease compared with the former period (Plt;0.05). The univariate analysis revealed that cardiopulmonary bypass (CPB) time was significantly longer in the death group than in the survival group(236±93 min vs. 198±50 min, P=0.002), and occurrence of major coronary events (33.3% vs. 2.2%, P=0.000) and unusual coronary artery patterns(33.3% vs. 6.5%,P=0.000) were much more in the death group than in the survival group. Multivariate logistic regression analysis showed that early year of [CM(159mm]operation (OR=7.463, P=0.003), unusual coronary artery patterns (OR=6.303,P=0.005) and occurrence of majorcoronary events (OR=17.312, P=0.000) were independent predictors for perioperative mortality. Conclusion The ASO can be performed with low perioperative mortality in our hospital currently. Occurrence of major coronary events, unusual coronary artery patterns and year of surgery before 2006 are independent predictors for perioperative mortality.
Objective To analyze the outcome of arterial switch operation (ASO) for surgical repair of complete transposition of the great arteries (TGA), and to investigate the risk factors influencing the mortality of ASO. Methods The clinical data of patients suffered from TGA and treated with ASO from the January 2003 to December 2004, and the clinical records in hospital including eehoeardiogram and operation record were collected. The clinical data were analyzed by chi-squared test and logistic muhivariable regression analysis, including the age undergone operation, body weight, diagnosis, anatomic type of coronary artery, cardiopulmonary bypass time, aortic crossclamping time, circulation arrest time, assisted respiration time after operation, the delayed closure of sternum and so on. The risk factors influencing the early mortality of the ASO were analyzed. Results Sixty seven patients were operated with ASO, five patients died during the peri-operative period. The outcome of univariate analysis indicated that risk factors influencing the mortality of ASO included: age(P=0. 004), body weight (P=0. 042), anatomic type of coronary artery (P= 0. 006) and extracorporeal circulation time (P= 0. 048), the length of the CICU stay(P= 0. 004) and the hospital stay(P=0. 007) after operation in the TGA/VSD patients were longer than those in TGA/ IVS patients. The logistic muhivariable regression analysis indicated that the age at operation (P= 0. 012), coronary arteries anomaly (P = 0.001 )and the longer cardiopulmonary bypass time (P = 0. 002) were correlated with the increase of death rate. Conclusion It could be good results for TGA patients who was repaired with ASO. The age at operation, the coronary arteries anomaly and the longer cardiopulmonary bypass time are the risk factors influencing the mortality.
Objective To review and summarize the clinical outcomes of neonatal D-transposition of the great arteries by rapid two-stage arterial switch operation. Methods Between September 2002 and May 2003, five neonates with D-transposition of the great arteries were repaired by rapid two-stage arterial switch operation. The operative age was 83.0±72.2 day and weight was 4.7±0.9 kg. Because these patients came to the hospital late, the left ventricle was unable to accommodate the systemic pressure, so the left ventricle had to be prepared by pulmonary artery banding and systemic-pulmonary arterial shunt. After 6-9 days, the arterial switch procedure was performed. Results At first stage, one patient died of supraventricular tachycardia and oliguria after peritoneal dialysis. Four patients were repaired by arterial switch operation with no death. These patients were followed up for 2 to 10 months and had good development. The echocardiogram showed that there were no intracardiac residual shunt , the aorta and pulmonary artery anastomosis had no obstruction . The heart function was good, ejection fraction 0.68-0.77,fractional shortening 0.24-0.37. One patient had mild aortic valve regurgitation. Conclusion Rapid two-stage arterial switch operation is the best way for neonatal D-transposition of the great arteries that the left ventricle was unable to accommodate the systemic pressure.
ObjectiveTo compare and analyze the effect of myocardial protection between HTK and del Nido cardioplegia solutions in neonates with surgeries for transposition of the great arteries. MethodsThe clinical data of 208 neonates with complete transposition of the great arteries in our institution from 2014 to 2020 were retrospectively analyzed. According to the cardioplegia solutions utilized in the operations, the patients were divided into two groups: a HTK group and a del Nido group. Propensity score matching was conducted to eliminate the biases. The cardiopulmonary bypass time, aortic cross-clamping time, total amount of cardioplegia solutions, transfusion frequency of cardioplegia, ICU stay time, mechanical support time, inotropic score, hospital stay, left ventricular ejection fraction, N-terminal proBNP and troponin I were compared and analyzed between the two groups after matching. ResultsAfter 1:1 propensity score matching, a total of 54 patients were analyzed with 27 patients in each group. In the HTK group, there were 22 males and 5 females with a median age of 7.0 (2.0, 11.0) d. In the del Nido group, there were 23 males and 4 females with a median age of 8.0 (3.0, 11.0) d. A total of 3 children died after the surgery: 2 (7.4%) patients in the HTK group and 1 (3.7%) patient in the del Nido group. There was no significant difference in hospital mortality between the two groups (P=1.000). The total amount of cardioplegia solutions in the HTK group was significantly higher than that of del Nido group (P<0.001). Transfusion frequency of cardioplegia in del Nido group was significantly higher than that of the HTK group (P=0.043). There was no significant difference in the postoperative ICU time, mechanical support time, length of hospital stay, inotropic score, left ventricular ejection fraction, N-terminal B-type natriuretic peptide precursor or troponin I between the two groups (P>0.05). ConclusionFor neonates with surgeries for complete transposition of the great arteries, HTK cardioplegia solutions can provide effective and safe myocardial protection, which is similar to del Nido cardioplegia solutions.
Objective To investigate the surgical indications and the mid and long term results of morphologic tricuspid valve replacement for corrected transposition of the great arteries(cTGA). Methods From September 1997 to September 2007, 18 cases with cTGA were treated in Fu Wai Hospital. There were 15 male and 3 female, aged from 16 to 51 years(33.3±12.8 years), and weighed from 47 to 90 kg(60.9±14.7 kg). There were 10 cases with isolated morphologic tricuspid valve insufficiency, 3 complicated with ventricular septal defect, 2 complicated with ventricular septal defect and pulmonary valve stenosis, 2 with morphologic tricuspid valve insufficiency after septal defect repair, and 1 with mechanical valve dysfunction after morphologic tricuspid valve replacement. The preoperative mean morphologic right ventricle ejection fraction was 562%±11.6%. Of the 18 cases, 12 were in grade Ⅱ and 6 were in grade Ⅲ according to New York Heart classification(NYHA).All the cases had undergone morphologic tricuspid valve replacement. Postoperative indices such as cardiac function and morphological right ventricle ejection fraction were followed up. Results One patient died of postoperative low cardiac output syndrome. Two had pervavlvular leak, which were cured by pervavlvular leak repair at 7th and 30th day after operation, respectively. Sixteen were followed up with a followup time of 57.0±407 months. There was no statistical significance between preoperative and postoperative mean morphologic right ventricle ejection fraction(52.8%±9.2% vs.56.2%±11.6%; t=2.062, Pgt;0.05). The followup showed that 12 were in NYHA grade Ⅰ or Ⅱ, and 4 were in NYHA grade Ⅲ. There was no statistical significance between preoperative and postoperative percentage of cases in NYHA grade Ⅲ(χ2=1.532,Pgt;0.05). Conclusion Morphologic tricuspid valve replacement can prevent the further damage to morphologic right ventricular function caused by morphologic tricuspid valve insufficiency. The mid and long term results were satisfying. During the followup, the morphologic right ventricle can function appropriately.
Abstract: Objective?To evaluate clinical experiences and long-term outcome of morphologic left ventricle (mLV) retraining for congenitally corrected transposition of the great arteries (cCTGA). Methods From May 2005 to May 2011, 24 patients with cCTGA anomaly underwent left ventricle retraining by means of pulmonary artery banding in Fu Wai Hospital. There were 13 males and 11 females with their age of 0.17-22.00 (3.73±4.35) years and body weight of 5.10-61.00(15.71±10.95)kg. Major concomitant malformations included tricuspid valve insufficiency (TR)in 23 patients (mild in 11 patients, moderate in 7 patients, severe in 5 patients), restrictive ventricular septal defect in 18 patients, atrial septal defect in 5 patients, patent foramen ovale in 5 patients, patent ductus arteriosus in 4 patients, mild pulmonary stenosis in 5 patients, and aortic coarctation in 1 patient. All the patients were preoperatively diagnosed by echocardiography, cardiovascular angiography or cardiac catheterization. The mLV end diastolic diameter (mLVEDD) was 8-32(21.56±6.60)mm, posterior wall thickness of mLV was 2-7 (4.29±1.52)mm , mLV to morphologic right ventricle (mRV) pressure ratio (mLV/mRV) was 0.12-0.65 (0.41±0.12). Pulmonary artery banding operation was performed through upper partial sternotomy or median sternotomy without circulatory arrest. Results The mLV/mRV pressure ratio reached to 0.57-0.93 (0.76±0.10) under direct pressure monitoring after surgery. There was no in-hospital death in this group. Echocardiography before discharge showed that the structure and function of the two ventricles were good, the interventricular septum moved partially towards mRV, mLVEDD was increased slightly, and there was a tendency of reduced TR. Postoperative follows-up was from 1 to 35 months, and there was no late death during follow-up. All the patients were in good general condition with stable vital signs and New York Heart Association (NYHA) classⅠ-Ⅱ. The mLVEDD was 14-40 (26.17±7.11) mm, posterior wall thickness of mLV was 4-9 (4.95±1.44)mm, mLV/mRV pressure ratio was 0.52-0.98 (0.72±0.16) , and TR was significantly decreased. Fourteen patients successfully underwent staged complete double-switch procedure. Conclusion Left ventricle retraining is a safe and effective method to train mLV for cCTGA patients. Pressure load and posterior wall thickness of mLV are increased, mLV cavity is dilated, and TR is significantly reduced after the surgery.
A 23-year-old male patient was diagnosed with congenitally corrected transposition of the great arteries (ccTGA) at the age of 3 during a routine physical examination. Due to the absence of significant symptoms, the patient was managed conservatively with follow-up without surgical treatment. He developed chest tightness one year prior to admission, with symptom exacerbation in the recent month. Echocardiography demonstrated significantly worsened morphological tricuspid regurgitation. The patient presented to Guangdong Provincial People’s Hospital for surgical evaluation. Given the patient’s age and clinical presentation, a totally thoracoscopic morphological tricuspid valve replacement was performed. Postoperative assessment showed good prosthetic valve function, with no regurgitation or paravalvular leakage; the electrocardiogram confirmed sinus rhythm without atrioventricular block. Extubation occurred within 12 hours postoperatively, and the patient was transferred from the intensive care unit (ICU) on postoperative day 2. At the three-month follow-up, the patient was asymptomatic and had resumed normal activities. This report describes the first case of a totally thoracoscopic morphological tricuspid valve replacement in a ccTGA patient in China. This initial experience suggests that the totally thoracoscopic approach for morphological tricuspid valve replacement in ccTGA patients is a feasible, safe, and effective minimally invasive option associated with rapid recovery.
Objective To analyze the growth of anastomotic stoma of aortic(AO) and pulmonary artery (PA) after arteries switch operation(ASO) so as to assess the longterm efficacy of ASO . Methods The data of 331 patients who had undergone ASO in Shanghai Children’s Medical Center of Jiaotong University from December 1999 to December 2007 was analysed retrospectively. One hundred eleven patients had complete transposition of great arteries complicated with intact ventricular septum(TGA/IVS), 123 had complete transposition of great arteries complicated with ventricular septal defect(TGA/VSD), 73 had TaussigBing complicated with ventricular septal defect and pulmonary hypertension, and 24 underwent StageSwitch. Of the 331 patients 228 were followedup, and the followup time was 20.4±18.6 months. There were 752 ultrasonic cardiograph reports, 3.3per patient on average. The growth of anastomosis was analysed according to the diameters of AO and PA. Results The AO and PA anastomosis diameters of TGA/IVS patients(before discharge 0.74±0.17 cm and 0.65±0.13 cm, latest followup 1.09±0.31cm and 0.84±0.21 cm), TGA/VSD patients (before discharge 0.76±0.20 cm and 0.63±0.14 cm, latest followup 1.09±0.24 cm and 0.82±0.22 cm) and TaussigBing patients(before discharge 0.84±0.25 cm and 0.74±0.20 cm, latest followup 1.05±0.30 cm and 0.85±0.24 cm) growed significantly(Plt;0.05). The AO anastomotic stoma diameters of patients who had underwent StageSwtich (before discharge 0.93±0.19 cm, latest followup 1.19±0.29 cm) growed significantly(Plt;0.05). The PA anastomotic stoma diameter growed(before discharge 0.90±0.27 cm, latest followup 1.00±0.32 cm), but had no statistical significance (P>0.05). Till November 2008, Six patients needed reoperation because of the right or left ventricle outflow tract obstruction. After reoperation, 3 had no residual obstruction, 3 had residual obstruction. Conclusion After the section and suture of ASO, aortic and pulmonary artery can grow with age, but sometimes stenosis happens to some patients. During the followingup, some patients need reoperation.
Objective To compare the early and mid-term results between Fontan operation and anatomic correction for congenitally corrected transposition of the great arteries (ccTGA). Methods The clinical data of 53 patients with ccTGA who underwent anatomic correction and Fontan operation from January 2009 to September 2021 in our hospital were reviewed, including 41 males and 12 females with a mean age of 55.02 (3-168) months. They were divided into an anatomic correction group (16 patients) and a Fontan operation group (37 patients) according to the operation. The hospitalization mortality, survival rate, postoperative complications, and free rate from re-intervention between the two groups were compared. Another 180 healthy children were recruited as a control group, and 14 children were matched with the propensity score matching method as a Fontan control group. The results of cardiopulmonary exercise testing (CPET) between the Fontan operation group and the Fontan control group were compared. Results There were 2 (12.5%) early deaths and 3 (18.8%) early re-intervention in the anatomic correction group, while 1 death and 2 re-intervention in the Fontan operation group. In addition, there were 9 patients (56.3%) in the anatomic correction group and 6 (16.2%) patients in the Fontan operation group suffering from arrhythmia after operation, respectively. Compared with the anatomic correction group, cardiopulmonary bypass time, aortic cross-clamping time, intubation time and ICU stay were significantly shortened in the Fontan operation group (P<0.05). CPET results showed that, percent predicted max VO2 in the Fontan operation group was lower than that in the Fontan control group (0.84±0.11 vs. 0.99±0.12, P<0.05). The patients were followed up for 0.5-126.0 months. Two patients were lost in the Fontan operation group. There was no death and 1 re-intervention in the anatomic correction group, while no death or re-intervention in the Fontan operation group. The 1-year, 5-year and 10-year transplant-free survival rate of the anatomic correction group and the Fontan operation group was 87.5%, 87.5%, 87.5% and 97.3%, 97.3%, 97.3%, respectively (P>0.05). The 48 patients were classified as grade Ⅰ-Ⅱ in cardiac function in the last follow-up. Conclusion There is no statistical difference in the transplant-free survival rate between the anatomic correction and the Fontan operation group. The postoperative complications in the Fontan operation group are decreased than those in the anatomic correction group. The Fontan operation is also a good choice, even though the patients with ccTGA meet the condition of the procedure of anatomic correction.
Objective To evaluate the impact of an integrated management mode of prenatal diagnosis-postnatal treatment for congenital heart disease (CHD) on perioperative and long-term outcomes of the arterial switch operation (ASO), and to analyze the efficacy of ASO over six years in a single center. Methods This retrospective study analyzed the clinical data of 183 children who underwent ASO at Guangdong Provincial People's Hospital from January 2018 to December 2024. The cohort included 106 patients (57.9%) of transposition of the great arteries with intact ventricular septum (TGA/IVS), 61 patients (33.3%) of transposition of the great arteries with ventricular septal defect (TGA/VSD), and 16 patients (8.7%) of taussig-bing anomaly (TBA). Perioperative indicators were compared between 91 patients in the prenatal-postnatal integrated management group (an integrated group) and 92 patients in the traditional management group (a non-integrated group). Long-term survival and reoperation rates were analyzed using Kaplan-Meier curves. Results The overall perioperative mortality rate was 4.9% (9/183), showing a downward trend year by year. The primary cause of perioperative mortality was low cardiac output syndrome (LCOS), which occurred in 12 patients (6.6% incidence) with a mortality rate of 75%. The integrated group had a higher proportion of males (89% vs. 72.8%, P<0.05) and lower body weight [3.13 (2.75, 3.35) vs. 3.30 (3.00, 3.67), P<0.05] compared to the non-integrated group. The age at surgery was significantly earlier in the integrated group [7 (3, 10) vs. 14 (9, 48), P<0.05], and all children in the Integrated Group underwent ASO within the optimal surgical window (100% vs. 82.6%, P<0.05). Intraoperatively, cardiopulmonary bypass (CPB) time [173 (150, 207) vs. 186 (159, 237), P<0.05] and aortic cross-clamp (ACC) time [100 (90, 117) vs. 116 (97, 142), P<0.05] were significantly shorter in the integrated group. although the integrated group had longer postoperative mechanical ventilation time [145 (98, 214) vs. 116 (77, 147), P<0.05] and higher 48-hour maximum vasoactive inotropic score (VISmax) [15 (10, 21) vs. 12 (8, 16), P<0.05], there was no statistically significant difference in the incidence of severe complications (LCOS, NEC, ECMO) or mortality rate (3.3% vs. 6.5%, P=0.51) between the two groups, despite earlier surgical intervention and a higher proportion of critically ill cases in the integrated group. The length of hospital stay in the emergency surgery group was significantly shorter than that in the elective surgery group [20 (15, 28) vs. 25 (21, 30), P<0.05], suggesting that early surgery may be of potential benefit. A total of 163 patients were successfully followed up for a median of 4.7 years, with a 5-year survival rate of 95.1% and a freedom from reintervention survival rate of 95.1%. There were no late deaths, and the most common postoperative complication was pulmonary artery stenosis. Conclusion The integrated management model allowed critically ill children with lower body weights to safely undergo surgery, significantly optimizing the timing of surgery and shortening intraoperative times. The long-term risk of reoperation after ASO is primarily concentrated on pulmonary artery stenosis, necessitating long-term follow-up and monitoring.